

CONTENTS

Getting Started . 13

What’s new in Flash 5 ActionScript .13
Differences between ActionScript and JavaScript.13

Text syntax .14
Dot syntax .14
Data types .14
User-defined functions .14
Local variables .15
Math library. .15
Date and time functions. .15
Optimization .15
Watcher .15
XML .15

Understanding ActionScript . 19

About scripting in ActionScript. .19
About planning and debugging scripts .20
About object-oriented scripting .21
About Movie Clip objects .22
How scripts flow .23
Controlling when ActionScript runs .26

ActionScript terminology .27
Deconstructing a sample script .30
Using the Actions panel. .32

Normal Mode .33
Expert Mode .34
Switching between editing modes. .35
Using an external editor .36
Choosing Actions panel options .36
Highlighting and checking syntax .38
About error highlighting .38
1

Contents

2

Assigning actions to objects .39
Assigning actions to frames .40
Writing Scripts with ActionScript.43

Using ActionScript’s syntax .43
About data types .48
About variables .50
Using operators to manipulate values in expressions 55
Writing actions in ActionScript .61
Controlling flow in scripts. .63
Using predefined functions .66
Creating custom functions .67
Using predefined objects .70
Using custom objects .74
Opening Flash 4 files. .76
Using Flash 5 to create Flash 4 content .77
Creating Interaction with ActionScript 81

Creating a custom cursor. .82
Getting the mouse position .84
Capturing keypresses. .85
Creating a scrolling text field .88
Setting color values .90
Creating sound controls .92
Detecting collisions .96
Integrating Flash with Web Applications99

Sending and loading variables to and from a remote file 99
Using loadVariables, getURL, and loadMovie 103
For more information on loadVariables, getURL, and loadMovie, see
their entries in Chapter 7, “ActionScript Dictionary.”About XML . . .
104
Using the XML object .104
Using the XMLSocket object .108

Creating forms .109
Creating a search form .110
Using variables in forms .111
Verifying entered data .111

Sending messages to and from the Flash Player113
Using fscommand .113
About Flash Player methods. .115

Troubleshooting ActionScript 117

Authoring and troubleshooting guidelines. .117
Using the Debugger .119

Enabling debugging in a movie .120
About the status bar .121
About the display list .121
Displaying and modifying variables .122
Using the watch list .123
Displaying movie properties and changing editable properties . . .123

Using the Output window .125
Using List Objects .125
Using List Variables .126
Using trace. .126

ActionScript Dictionary. 129

Sample entry for most ActionScript elements 130
Sample entry for objects .131
Contents of the dictionary .131
–– (decrement) .143
++ (increment) .143
! (logical NOT) .144
!= (inequality) .145
% (modulo) .146
%= (modulo assignment) .146
& (bitwise AND) .147
&& (short-circuit AND). .147
&= (bitwise AND assignment) .148
() (parentheses) .149
– (minus) .150
* (multiplication) .151
*= (multiplication assignment) .151
, (comma) .152
. (dot operator) .152
/ (division) .154
// (comment delimiter) .154
/= (division assignment) .155
[] (array access operator) .155
^(bitwise XOR). .156
^= (bitwise XOR assignment) .156
{} (object initializer) .157
| (bitwise OR) .157
|| (or). .158
Contents 3

Contents

4

|= (bitwise OR assignment) .158
~ (bitwise NOT) .159
+ (addition). .159
+= (addition assignment). .160
< (less than). .161
<< (bitwise left shift) .162
<<= (bitwise left shift and assignment) .163
<= (less than or equal to) .164
= (assignment). .164
-=(negation assignment) .165
==(equality). .166
> (greater than) .166
>= (greater than or equal to) .167
>>(bitwise right shift) .167
>>= (bitwise right shift and assignment) .168
>>> (bitwise unsigned right shift) .169
>>>= (bitwise unsigned right shift and assignment)170
ActionScript Elements. .171
add .171
_alpha .172
Array. .172
Constructor for the Array object .173
Array.concat .174
Array.join .175
Array.length .175
Array.pop .176
Array.push. .176
Array.reverse .177
Array.shift .177
Array.slice .178
Array.sort .178
Array.splice .180
Array.unshift .181
Boolean. .181
Boolean. .182
Boolean.toString .183
Boolean.valueOf .183
break .183
call .184
chr .184

Color .185
Color.getRGB .185
Color.getTransform .186
Color.setRGB .186
Color.setTransform .187
continue .188
_currentframe .189
Date .189
Constructor for the Date object .191
Date.getDate. .192
Date.getDay .192
Date.getFullYear .193
Date.getHours. .193
Date.getMilliseconds. .193
Date.getMinutes .194
Date.getMonth .194
Date.getSeconds .194
Date.getTime .195
Date.getTimezoneOffset .195
Date.getYear .196
Date.getUTCDate .196
Date.getUTCDay .196
Date.getUTCFullYear .197
Date.getUTCHours .197
Date.getUTCMilliseconds .197
Date.getUTCMinutes .198
Date.getUTCMonth .198
Date.getUTCSeconds .198
Date.setDate .199
Date.setFullYear .199
Date.setHours .199
Date.setMilliseconds .200
Date.setMinutes .200
Date.setMonth .200
Date.setSeconds .201
Date.setUTCFullYear .201
Date.setUTCDate .202
Date.setUTCHours. .202
Date.setUTCMilliseconds .202
Date.setUTCMinutes .203
Contents 5

Contents

6

Date.setUTCMonth .203
Date.setUTCSeconds .203
Date.setYear .204
Date.UTC. .204
delete .205
do while .205
_droptarget .206
duplicateMovieClip. .206
else .207
else if. .208
eq (equal—string version) .208
escape .209
eval .209
evaluate .209
for .210
for..in .211
_focusrect .212
_framesloaded .212
fscommand .213
function .214
ge (greater than or equal to—string version) .214
gt (greater than -string version) .214
getProperty .215
getTimer .215
getURL .216
getVersion .217
gotoAndPlay .217
gotoAndStop. .218
_height .218
_highquality .219
if .219
ifFrameLoaded .220
include .220
Infinity .221
int .221
isFinite .221
isNaN .222
Key .222
Key.BACKSPACE. .224
Key.CAPSLOCK .224

Key.CONTROL .224
Key.DELETEKEY .225
Key.DOWN .225
Key.END .225
Key.ENTER .226
Key.ESCAPE. .226
Key.getAscii. .226
Key.getCode .227
Key.HOME .227
Key.INSERT. .227
Key.isDown. .228
Key.isToggled .228
Key.LEFT .228
Key.PGDN .229
Key.PGUP .229
Key.RIGHT .229
Key.SHIFT .230
Key.SPACE .230
Key.TAB .230
Key.UP .230
le (less than or equal to - string version) .231
length .231
loadMovie .232
loadVariables .232
lt (less than - string version) .233
Math. .234
Math.abs .236
Math.acos .236
Math.asin .236
Math.atan .237
Math.atan2 .237
Math.ceil. .238
Math.cos .238
Math.E .238
Math.exp. .239
Math.floor. .239
Math.log .240
Math.LOG2E .240
Math.LOG10E .240
Math.LN2. .241
Contents 7

Contents

8

Math.LN10. .241
Math.max .241
Math.min .242
Math.PI .242
Math.pow .243
Math.round .243
Math.sin .243
Math.sqrt .244
Math.SQRT1_2 .244
Math.SQRT2 .244
Math.tan .245
maxscroll. .245
mbchr .246
mblength .246
mbord .246
mbsubstring .247
Mouse object. .247
MovieClipobject .248
MovieClip.attachMovie. .249
MovieClip.duplicateMovieClip .250
MovieClip.getBounds .250
MovieClip.getBytesLoaded .251
MovieClip.getBytesTotal .251
MovieClip.getURL .251
MovieClip.globalToLocal .252
MovieClip.gotoAndPlay .253
MovieClip.gotoAndStop .253
MovieClip.hitTest .253
MovieClip.loadMovie .254
MovieClip.loadVariables .255
MovieClip.localToGlobal .255
MovieClip.nextFrame .256
MovieClip.play .256
MovieClip.prevFrame .257
MovieClip.removeMovieClip .257
MovieClip.startDrag .257
MovieClip.stop .258
MovieClip.stopDrag .258
MovieClip.swapDepths .259
MovieClip.unloadMovie .259

_name. .260
NaN .260
ne (not equal - string version) .260
newline .261
nextFrame .261
nextScene .262
not .262
null .262
Number .263
Number .263
Number.toString .265
Number.valueOf .265
Number.MAX_VALUE .266
Number.MIN_VALUE .266
Number.NaN .266
Number.NEGATIVE_INFINITY .267
Number.POSITIVE_INFINITY .267
Object object .267
Constructor for the Object o bject .268
Object.toString .268
Object.valueOf .268
onClipEvent .269
on(MouseEvent) .270
ord .272
_parent .272
parseFloat .272
parseInt .273
play .274
prevFrame .274
prevScene .275
print .275
printAsBitmap .277
random .278
removeMovieClip .278
return .278
_root .279
_rotation .280
scroll .280
Selection .281
Selection.getBeginIndex .281
Contents 9

Contents

10

Selection.getCaretIndex. .282
Selection.getEndIndex. .282
Selection.getFocus .282
Selection.setFocus .283
Selection.setSelection .283
set .283
setProperty .285
Sound .285
Sound.attachSound .286
Sound.getPan .287
Sound.getTransform .287
Sound.getVolume .288
Sound.setPan. .288
Sound.setTransform .289
Sound.setVolume .291
Sound.start .291
Sound.stop .292
_soundbuftime .292
startDrag. .293
stop. .293
stopAllSounds .294
stopDrag .294
String .295
" " (string delimiter) .295
String .296
Constructor for the String object. .297
String.charAt. .298
String.charCodeAt .298
String.concat .298
String.fromCharCode .299
String.indexOf .299
String.lastIndexOf. .299
String.length .300
String.slice. .300
String.split .301
String.substr .301
String.substring .302
String.toLowerCase .302
String.toUpperCase. .302
substring .303

_target. .303
targetPath .303
tellTarget. .304
this .305
toggleHighQuality .306
_totalframes .306
trace .307
typeof .308
unescape .308
unloadMovie .309
updateAfterEvent .309
_url .310
var. .310
_visible .311
void. .311
while .312
_width .313
_x .313
XML Object .314
XML.appendChild .316
XML.attributes .316
XML.childNodes .317
XML.cloneNode .317
XML.createElement .318
XML.createTextNode .318
XML.docTypeDecl .319
XML.firstChild .319
XML.haschildNodes .320
XML.insertBefore .320
XML.lastChild .321
XML.load .321
XML.loaded .322
XML.nextSibling .322
XML.nodeName. .322
XML.nodeType. .323
XML.nodeValue .323
XML.onLoad .324
XML.parentNode .324
XML.parseXML .325
XML.previousSibling .325
Contents 11

Contents

12

XML.removeNode .326
XML.send .326
XML.sendAndLoad. .326
XML.status .327
XML.toString .328
XML.xmlDecl. .328
XMLSocket object .329
XMLSocket.close .330
XMLSocket.connect .330
XMLSocket.onClose .331
XMLSocket.onConnect .331
XMLSocket.onXML .332
XMLSocket.send. .332
_xmouse .332
_xscale. .333
_y .333
_ymouse .333
_yscale. .334
Operator Precedence and Associativity. 335

Operator List .335
Keyboard Keys and Key Code Values 341

. .341
Letters A to Z and standard numbers 0 to 9 .342
. .344
Keys on the numeric keypad .344
Function keys .345
Other keys .345
Error Messages . 347

. .347

. .348

INTRODUCTION

. .. .
Getting Started

ActionScript is Flash’s scripting language. Use ActionScript to create navigation
and interactive elements and to extend Flash to create highly interactive movies
and web applications.

What’s new in Flash 5 ActionScript
Flash 5 ActionScript offers exciting new features for creating immersive,
interactive web sites with sophisticated games, forms, and surveys. ActionScript
syntax has been updated to resemble JavaScript.

Differences between ActionScript and
JavaScript
Flash 5 ActionScript incorporates many new features and syntax conventions that
make it similar to the JavaScript programming language. ActionScript is based on
ECMA-262 (the European Computers Manufacturers Association specification,
available from http://www.ecma.ch), which is the international standard for the
JavaScript language. ActionScript is not fully ECMA-262 compliant, but ECMA-
262 is nevertheless a valuable reference. Any book about JavaScript or information
on the Netscape DevEdge Web site (http://developer.netscape.com/docs/manuals/
js/core/jsguide/index.htm) is also useful for understanding ActionScript.

If you know JavaScript, ActionScript will appear familiar to you. Some of the
differences between ActionScript and JavaScript are as follows:

� ActionScript does not support JavaScript’s browser-specific objects such as
Document, Window, and Anchor.
13

� ActionScript supports Flash-specific syntax constructs that are not permitted in
JavaScript, for example, the tellTarget and ifFrameLoaded actions and slash syntax.

� ActionScript does not completely support all JavaScript’s predefined objects.

� ActionScript does not support some JavaScript syntax constructs, such as
switch, continue, try, catch, throw, and statement labels.

� ActionScript does not support the JavaScript Function constructor, which
compiles the JavaScript code it is passed into a Function object.

� ActionScript can only perform variable references using eval.

� In JavaScript, toString of undefined is undefined In Flash 5, for Flash 4
compatibility, toString of undefined is " " .

� In JavaScript, evaluating undefined in a numeric context results in NaN. In Flash
5, for Flash 4 compatibility, it results in 0.

� ActionScript does not support Unicode; it supports ISO-8859-1 and Shift-JIS
character sets.

Text syntax

ActionScript scripts now have a real text syntax, in addition to the syntax-directed
style of editing from Flash 4. Scripts can now be entered using an ordinary text
editor. The new text syntax of ActionScript looks syntactically much like
JavaScript.

Dot syntax

Data types

In Flash 4, all variables were strings and the context determined if they were
treated as numbers or strings. Flash 5 has data types, string , number, boolean,
object, and movie clip. You can create arrays and associative arrays more easily.
<<<TELL WHY THIS IS GOOD>>>

User-defined functions

The Call action made it possible to build subroutines in Flash 4, but the Call
action lacked the notion of paramater passing and return values. Flash 5
introduces JavaScript-style function declarations with parameter passing and
return values.
Introduction14

Local variables

Flash 4 variables were all permanent -- even lowly temporary variables like loop
counters hung around until the movie ended. In Flash 5, it is possible to declare
local variables which expire at the end of the action list or function call stack
frame.

Math library

Flash 5 features a full complement of built-in mathematical functions.

Date and time functions

Date and time functions have also been added to Flash 5, making it possible to
query the date and time on the user's system.

Optimization

Flash 5 performs some simple optimizations on ActionScript code to improve
performance and conserve file size. As a result of these optimizations, Flash 5 will
often produce smaller ActionScript bytecode than Flash 4.

Watcher

XML

Using the rest of the book...

Backwards compatibility section (Flash 4 AS is converted and supported)

Exploring... writing short scripts is the way to learn

http://developer.netscape.com

http://developer.netscape.com/docs/manuals/js/client/jsguide/index.htm

JavaScript The Definitive Guide by David Flanagan pub OReilly

Explain that it’s derived from the ECMA spec and how it’s related to JS.
Getting Started 15

Introduction16

Getting Started 17

Introduction18

1

CHAPTER 1

. .. .
Understanding ActionScript

ActionScript, Flash’s scripting language, adds interactivity to a movie. You can set
up your movie so that user events, such as button clicks and keypresses, trigger
scripts that tell the movie what action to perform. For example, you can write a
script that tells Flash to load different movies into the Flash Player depending on
which navigation button a user chooses.

Think of ActionScript as a tool that allows you to create a movie that behaves
exactly as you want. You don’t need to understand every possible use of the tool to
begin scripting; if you have a clear goal, you can start building scripts with simple
actions. You can incorporate new elements of the language as you learn them to
accomplish more complicated tasks.

This chapter introduces you to ActionScript as an object-oriented scripting
language and provides an overview of ActionScript terms. It also deconstructs a
sample script so that you can begin to focus on the bigger picture.

This chapter also introduces you to the Actions panel, where you can build scripts
by selecting ActionScript elements.

About scripting in ActionScript
You can start writing simple scripts without knowing much about ActionScript.
All you need is a goal; then it’s just a matter of picking the right actions. The best
way to learn how simple ActionScript can be is to create a script. The following
steps attach a script to a button that changes the visibility of a movie clip.

To change the visibility of a movie clip:

1 Choose Window > Common Libraries > Buttons, and then choose Window >
Common Libraries > Movie Clips. Place a button and a movie clip on the
Stage.
19

2 Select the movie clip instance on the Stage, and choose Window > Panels >
Instance Properties.

3 In the Name field, enter testMC.

4 Select the button on the Stage, and choose Window > Actions to open the
Actions panel.

5 In the Object Actions panel, click the Actions category to open it.

6 Double-click the setProperty action to add it to the Actions list.

7 From the Property pop-up menu, choose _visible (Visibility).

8 For the Target parameter, enter testMC.

9 For the Value parameter, enter 0.

The code should look like this:

on (release) {
 setProperty ("testMC", _visible, false);
}

10 Choose Control > Test Movie and click the button to see the movie clip
disappear.

ActionScript is an object-oriented scripting language. This means that actions
control objects when a particular event occurs. In this script, the event is the
release of the mouse, the object is the movie clip instance MC, and the action is
setProperty. When the user clicks the onscreen button, a release event triggers
a script that sets the _visible property of the object MC to false and causes the
object to become invisible.

You can use the Actions panel to guide you through setting up simple scripts. To
use the full power of ActionScript, it is important to understand how the language
works: the concepts, elements, and rules that the language uses to organize
information and create interactive movies.

This section explains the ActionScript workflow, the fundamental concepts of
object-oriented scripting, Flash objects, and script flow. It also describes where
scripts reside in a Flash movie.

About planning and debugging scripts

When you write scripts for an entire movie, the quantity and variety of scripts can
be large. Deciding which actions to use, how to structure scripts effectively, and
where scripts should be placed requires careful planning and testing, especially as
the complexity of your movie grows.

Before you begin writing scripts, formulate your goal and understand what you
want to achieve. This is as important—and typically as time consuming—as
developing storyboards for your work. Start by writing out what you want to
happen in the movie, as in this example:
Chapter 120

• I want to create my whole site using Flash.

• Site visitors will be asked for their name, which will be reused in messages
throughout the site.

• The site will have a draggable navigation bar with buttons that link to each
section of the site.

• When a button is clicked, the new section will fade in to the center of the
Stage.

• One scene will have a contact form with the user’s name already filled in.

When you know what you want, you can build the objects you need and write the
scripts to control those objects.

Getting scripts to work the way you want takes time—often more than one cycle
of writing, testing, and debugging. The best approach is to start simple and test
your work frequently. When you get one part of a script working, choose Save As
to save a version of the file (for example, myMovie01.fla) and start writing the
next part. This approach will help you identify bugs efficiently and ensure that
your ActionScript is solid as you write more complex scripts.

About object-oriented scripting

In object oriented scripting you organize information by arranging it into groups
called classes. You can create multiple instances of a class, called objects, to use in
your scripts. You can use ActionScript’s predefined classes and create your own.

When you create a class, you define all the properties (characteristics) and methods
(behaviors) of each object it creates, just as real world objects are defined. For
example, a person has properties such as gender, height, and hair color and
methods such as talk, walk, and throw. In this example, “person” is a class and
each individual person is an object, or an instance of that class.

Objects in ActionScript can contain data or they can be graphically represented on
the Stage as movie clips. All movie clips are instances of the predefined class
MovieClip. Each movie clip instance contains all the properties (for example,
_height, _rotation, _totalframes) and all the methods (for example,
gotoAndPlay, loadMovie, startDrag) of the MovieClip class.
Understanding ActionScript 21

To define a class, you create a special function called a constructor function;
predefined classes have constructor functions that are already defined. For
example, if you want information about a bicycle rider in your movie, you could
create a constructor function, Biker, with the properties time and distance and
the method rate, which tells you how fast a biker is traveling:

function Biker(t, d) {
this.time = t;
this.distance = d;

}
function Speed() {

return this.time / this.distance;
}
Biker.prototype.rate = Speed;

You could then create copies—that is, instances—of the class. The following code
creates instances of the object Biker called emma and hamish.

emma = new Biker(30, 5);
hamish = new Biker(40, 5)

Instances can also communicate with each other. For the Biker object, you could
create a method called shove that lets one biker shove another biker. (The
instance emma could call its shove method if hamish got too close.) To pass
information to a method, you use parameters (arguments): for example, the
shove method could take the parameters who and howFar. In this example emma
shoves hamish 10 pixels:

emma.shove(hamish, 10);

In object-oriented scripting, classes can receive properties and methods from each
other according to a specific order; this is called inheritance. You can use
inheritance to extend or redefine the properties and methods of a class. A class
that inherits from another class is called a subclass. A class that passes properties
and methods to another class is called a superclass. A class can be both a subclass
and a superclass.

About Movie Clip objects

ActionScript’s predefined classes are called Objects. Each Object allows you to
access a certain type of information. For example, the Date object has methods
(for example, getFullYear, getMonth), that allow you to read information from
the system clock. The Sound object has methods (for example, setVolume,
setPan) that allow you to control a sound in a movie. The MovieClip object has
methods that allow you to control movie clip instances (for example, play, stop,
and getURL) and get and set information about their properties (for example,
_alpha, _framesloaded, _visible).
Chapter 122

Movie clips are the most important objects of a Flash movie because they have
Timelines that run independently of each other. For example, if the main
Timeline only has one frame and a movie clip in that frame has 10 frames, each
frame in the movie clip will still play. This allows instances to act as autonomous
objects that can communicate with each other.

Movie clip instances each have a unique instance name so that you can target
them with an action. For example, you may have multiple instances on the Stage
(for example, leftClip and rightClip) and only want one to play at a time.To
assign an action that tells one particular instance to play, you need to use its name.
In the following example, the movie clip’s name is leftClip:

leftClip.play();

Instance names also allow you to duplicate, remove, and drag movie clips while a
movie plays. The following example duplicates the instance cartItem to fill out a
shopping cart with the number of items purchased:

onClipEvent(load) {
 do {
 duplicateMovieClip("cartItem", "cartItem" + i, i);
 i = i + 1;
 } while (i <= numberItemsPur);
}

Movie clips have properties whose values you can set and retrieve dynamically
with ActionScript. Changing and reading these properties can change the
appearance and identity of a movie clip and is the key to creating interactivity. For
example, the following script uses the setProperty action to set the transparency
(alpha setting) of the navigationBar instance to 10:

setProperty("navigationBar", _alpha, 10);

For more information about other types of objects, see Using predefined objects.

How scripts flow

ActionScript follows a logical flow. Flash executes ActionScript statements starting
with the first statement and continuing in order until it reaches the final statement
or a statement that instructs ActionScript to go somewhere else.
Understanding ActionScript 23

Some actions that send ActionScript somewhere other than the next statement are
Chapter 124

if statements, do...while loops, and the return action.

Statement(s)

Else (conditional
statement(s))

False

True

End if

Statement(s)

If (conditional
statement(s))

False

True

Statement(s)

Statement

End
Do WhileLoop

Do WhileLoop
(conditional
statement)

False

True
Understanding ActionScript 25

An if statement is called a conditional statement or a “logical branch” because it
controls the flow of a script based on the evaluation of a certain condition. For
example, the following code states that if the number variable is less than or equal
to 10, the script will run:

if (number <= 10) {
 alert = "The number is less than or equal to 10";
}

You can also add else statements to create a more complicated conditional
statement. In the following example, the else statement runs a different script if
the number variable is greater than 10:

if (number <= 10) {
 alert = "The number is less than or equal to 10";
} else {
 alert = "The number is greater than 10";
}

For more information, see Using if statements.

Loops repeat an action a certain number of times or until a certain condition is
met. In the following example, a movie clip is duplicated five times:

i = 0;
do {
 duplicateMovieClip ("myMovieClip", "newMovieClip" + i, i);
 newName = eval("newMovieClip" + i);
 setProperty(newName, _x, getProperty("myMovieClip", _x) + (i *
5));
 i = i + 1;
} while (i <= 5);

For more information, see Repeating an action.

Controlling when ActionScript runs

When you write a script, you use the Actions panel. The Actions panel allows you
to attach the script to a frame on the main Timeline or the Timeline of any movie
clip, or to either a button or movie clip on the Stage.

Flash executes actions at different times, depending on what they’re attached to:

• Actions attached to a frame are executed when the playhead enters that frame.

• Actions attached to a button are enclosed in an on handler action.

• Actions attached to a movie clip are enclosed in an onClipEvent handler
action.
Chapter 126

The onClipEvent and on actions are called handlers because they “handle” or
manage an event. (An event is an occurrence such as a mouse movement, a
keypress, or a movie clip being loaded.) Movie clip and button actions execute
when the event specified by the handler occurs. You can attach more than one
handler to an object if you want actions to execute when different events happen.
For more information, see Chapter 3, “Creating Interactivity with ActionScript”.

Several onClipEvent handlers attached to a movie clip on the Stage.

ActionScript terminology
Like any scripting language, ActionScript uses specific terminology according to
specific rules of syntax. The following list provides an introduction to important
ActionScript terms in alphabetical order. These terms and the syntax that governs
them are discussed in more detail in Chapter 2, “Writing Scripts with
ActionScript.”

Actions are statements that instruct a movie to do something while it is playing.
For example, gotoAndStop sends the playhead to a specific frame or label. In this
book, the terms action and statement are interchangeable.

Arguments are placeholders that let you pass values to functions (see <<xref>>).
For example, the following function, called welcome, uses two values it receives in
the arguments firstName and hobby:

function welcome(firstName, hobby) {
welcomeText = "Hello, " + firstName + "I see you enjoy " +

hobby;
}

Classes are data types that you can create to define a new type of object. To define
a class of object, you create a constructor function.
Understanding ActionScript 27

Constants are elements that don’t change. For example, the constant TAB always
has the same meaning. Constants are useful for comparing values.

Constructors are functions that you use to define the properties and methods of a
class. For example, the following code creates a new Circle class by creating a
constructor function called Circle:

function Circle(x, y, radius){
this.x = x;
this.y = y;
this.radius = radius;

}

Data types are a set of values and the operations that can be performed on them.
String, number, true and false (Boolean) values, object, and movie clip are the
ActionScript data types. For more details on these language elements, see About
data types.

Events are actions that occur while a movie is playing. For example different
events are generated when a movie clip loads, the playhead enters a frame, the user
clicks a button or movie clip, or the user types at the keyboard.

Expressions are any parts of a statement that produce a value. For example, 2 + 2
is an expression.

Functions are blocks of reusable code that can be passed arguments (parameters)
and can return a value. For example, the getProperty function is passed the
name of a property and the instance name of a movie clip and it returns the value
of the property. The getVersion function returns the version of the Flash Player
currently playing the movie.

Handlers are special actions that “handle” or manage an event such as mouseDown
or load. For example, on (onMouseEvent) and onClipEvent are ActionScript
handlers.

Identifiers are names used to indicate a variable, property, object, function, or
method. The first character must be a letter, underscore(_), or dollar sign($). Each
subsequent character must be a letter, number, underscore(_), or dollar sign($).
For example, firstName is the name of a variable.

Instances are objects that belong to a certain class. Each instance of a class
contains all the properties and methods of that class. All movie clips are instances
with properties (for example, _alpha, and _visible) and methods (for example,
gotoAndPlay, and getURL) of the MovieClip class.

Instance names are unique names that allow you to target movie clip instances in
scripts. For example, a master symbol in the Library could be called counter and
the two instances of that symbol in the movie could have the instance names
scorePlayer1 and scorePlayer2. The following code sets a variable called
score inside each movie clip instance by using instance names:

_root.scorePlayer1.score += 1
_root.scorePlayer2.score -= 1
Chapter 128

Keywords are reserved words that have special meaning. For example, var is a
keyword used to declare local variables.

Methods are functions assigned to an object. After a function is assigned, it can be
called as a method of that object. For example, in the following code, clear
becomes a method of the controller object:

function Reset(){
x_pos = 0;
x_pos = 0;

}
controller.clear = Reset;
controller.clear();

Objects are collections of properties; each object has its own name and value.
Objects allow you to access a certain type of information. For example, the
predefined Date object provides information from the system clock.

Operators are terms that calculate a new value from one or more values. For
example, the addition (+) operator adds two or more values together to produce a
new value.

Target paths are hierarchical addresses of movie clip instance names, variables,
and objects in a movie. You can name a movie clip instance in the Instance panel.
The main Timeline always has the name _root. You can use a target path to direct
an action at a movie clip or to get or set the value of a variable. For example, the
following statement is the target path to the variable volume inside the movie clip
stereoControl:

_root.stereoControl.volume

Properties are attributes that define an object. For example, _visible is a
property of all movie clips that defines whether the movie clip is visible or hidden.

Variables are identifiers that hold values of any data type. Variables can be created,
changed, and updated. The values they store can be retrieved for use in scripts. In
the following example, the identifiers on the left side of the equal signs are
variables:

x = 5;
name = "Lolo";
customer.address = "66 7th Street";
c = new Color(mcinstanceName);
Understanding ActionScript 29

Deconstructing a sample script
In this sample movie, when a user drags the bug to the bug zapper, the bug turns
black and falls and the bug zapper flashes. The movie is one frame long and
contains two objects, the bug movie clip instance and the zapper movie clip
instance. Each movie clip also contains one frame.

The bug and zapper movie clip instances on the Stage in frame 1.
Chapter 130

There is only one script in the movie; it’s attached to the bug instance, as in the
Object Actions panel below:

The Object Actions panel with the script attached to the bug instance.

Both objects have to be movie clips so you can give them instance names in the
Instance panel and manipulate them with ActionScript. The bug’s instance name
is bug and the zapper’s instance name is zapper. In the script the bug is referred to
as this because the script is attached to the bug and the reserved word this refers
to the object that calls it.

There are two onClipEvent handlers with two different events: load and
enterFrame. The actions in the onClipEvent(load) statement only execute
once, when the movie loads. The actions in the onClipEvent(enterFrame)
statement execute every time the playhead enters a frame. Even in a one-frame
movie, the playhead still enters that frame repeatedly and the script executes
repeatedly. The following actions occur within each onClipEvent handler:

onClipEvent(load) A startDrag action makes the bug movie clip draggable. An
instance of the Color object is created with the new operator and the Color
constructor function, Color, and assigned to the variable zap:

onClipEvent (load) {
 startDrag (this, true);
 zap = new Color(this);
}

Handler
Action

Event

Variable

new operator
constructor function

if conditional
statement

else statement
Understanding ActionScript 31

onClipEvent(enterFrame) A conditional if statement evaluates a hitTest
action to check whether the bug instance (this) is touching the bug zapper
instance (_root.zapper). There are two possible outcomes of the evaluation,
true or false:

onClipEvent (enterFrame) {
 if (hitTest(_target, _root.zapper)) {
 zap.setRGB(0);
 setProperty (_target, _y, _y+50);
 setProperty (_root.zapper, _alpha, 50);
 stopDrag ();
 } else {
 setProperty (_root.zapper, _alpha, 100);
 }
}

If the hitTest action returns true, the zap object created by the load event is
used to set the bug’s color to black. The bug’s y property (_y) is set to itself plus 50
so that the bug falls. The zapper’s transparency (_alpha) is set to 50 so that it
dims. The stopDrag action stops the bug from being draggable.

If the hitTest action returns false, the action following the else statement runs
and the bug zapper’s _alpha value is set to 100. This makes the bug zapper appear
to flash as its _alpha value goes from an initial state (100) to a zapped state (50)
and back to an initial state. The hitTest action returns false and the else
statements execute after the bug has been zapped and fallen.

To see the movie play, see Flash Help.

Using the Actions panel
The Actions panel lets you create and edit actions for an object or frame using two
different editing modes. You can select prewritten actions from the Toolbox list,
drag and drop actions, and use buttons to delete or rearrange actions. In Normal
Mode you can write actions using parameter (argument) fields that prompt you
for the correct arguments. In Expert Mode you can write and edit actions directly
in a text box, much like writing script with a text editor.

To display the Actions panel:

Choose Window > Actions.

Selecting an instance of a button or movie clip makes the Actions panel active.
The Actions panel title changes to Object Actions if a button or movie clip is
selected, and to the Frame Actions panel if a frame is selected.

To select an editing mode:

1 With the Actions panel displayed, click the arrow in the upper right corner of
the panel to display the pop-up menu.
Chapter 132

2 Choose Normal Mode or Expert Mode from the pop-up menu.

Each script maintains its own mode. For example, you can script one instance
of a button in Normal Mode, and another in Expert Mode. Switching between
the selected button then switches the panel’s mode state.

Normal Mode

In Normal Mode you create actions by selecting actions from a list on the left side
of the panel, called the Toolbox list. The Toolbox list contains Basic Actions,
Actions, Operators, Functions, Properties, and Objects categories. The Basic
Actions category contains the simplest Flash actions and is only available in
Normal Mode. The selected actions are listed on the right side of the panel, in the
Actions list. You can add, delete, or change the order of action statements; you can
also enter parameters (arguments) for actions in parameter fields at the bottom of
the panel.

In Normal Mode you can use the controls in the Actions panel to delete or change
the order of statements in the Actions list. These controls are especially useful for
managing frame or button actions that have several statements.

The Actions panel in Normal Mode.

To select an action:

1 Click an Actions category in the toolbox to display the actions in that category.

2 Double-click an action or drag it to the Script window.

Target path button

Parameters pane

Script window

Actions list

Toolbox

Actions categories

Parameters field

Add a statement
Delete a statement Move a

 Options pop-up
menu
Understanding ActionScript 33

To use the Parameters fields:

1 Click the Parameters button in the lower right corner of the Actions panel to
display the fields.

2 Select the action and enter new values in the Parameters fields to change
parameters of existing actions.

To insert a movie clip target path:

1 Click the Target Path button in the lower right corner of the Actions panel to
display the Insert Target Path dialog.

2 Select a movie clip from the display list.

To move a statement up or down the list:

1 Select a statement in the Actions list.

2 Click the Up or Down Arrow buttons.

To delete an action:

1 Select a statement in the Actions list.

2 Click the Delete (-) button.

To change the parameters of existing actions:

1 Select a statement in the Actions list.

2 Enter new values in the Parameters fields.

To resize the Toolbox or Actions list, do one of the following:

„ Drag the vertical splitter bar that appears between the Toolbox and Actions list.

„ Double-click the splitter bar to collapse the Toolbox list; double-click the bar
again to redisplay the list.

„ Click the Left or Right Arrow button on the splitter bar to expand or collapse
the list.

When the Toolbox list is hidden, you can still access its items using the Add (+)
button in the upper left of the Actions panel.

Expert Mode

In Expert Mode you create actions by entering ActionScript into the text box on
the right side of the panel or by selecting actions from the Toolbox list on the left.
You edit actions, enter parameters for actions, or delete actions directly in the text
box, much like creating script in a text editor.
Chapter 134

Expert Mode lets advanced ActionScript users edit their scripts with a text editor,
as they would JavaScript or VBScript. Expert Mode differs from Normal Mode in
these ways:

• Selecting an item in the Add pop-up menu or Toolbox list inserts the item in
the text-editing area.

• No parameter fields appear.

• In the button panel, only the Add (+) button works.

• The Up and Down Arrow buttons remain inactive.

The Actions panel in Expert Mode.

Switching between editing modes

Changing editing modes while writing a script can change the formatting of the
script. For that reason, it is best to use one editing mode per script.

When you switch from Normal to Expert Mode, indentation and formatting is
maintained. Although you can convert Normal Mode scripts with errors to Expert
Mode, you cannot export the scripts until the errors are fixed.

Switching from Expert to Normal Mode is slightly more complex:

• When you switch to Normal mode, Flash reformats the script and strips any
white space and indentation you’ve added.

• If you switch to Normal Mode and then back to Expert Mode, Flash reformats
the script according to its appearance in Normal Mode.

• Expert Mode scripts containing errors cannot be exported or converted to
Normal Mode; if you try to convert the script, you’ll receive an error message.
Understanding ActionScript 35

To switch editing modes:

Choose Normal Mode or Expert Mode from the pop-up menu at the upper right
of the Actions panel. A check mark indicates the selected mode.

To set an editing mode preference:

Choose Edit > Preferences and under Actions Panel Options select Normal Mode
or Expert Mode from the pop-up menu.

Using an external editor

Although the Actions panel’s Expert Mode gives you more control when editing
ActionScript, you can also choose to edit a script outside Flash. You can then use
the include action to add the scripts you wrote in the external editor to a script
within Flash.

For example, the following statement imports a script file:

#include "externalfile.as"

The text of the script file replaces the include action. The text file must be
present when the movie is exported.

To add the scripts written in an external editor to a script within Flash:

1 Drag include from the Toolbox list to the Script window.

2 Enter the path to the external file in the Path box.

The path should be relative to the FLA file. For example, if myMovie.fla and
externalfile.as were in the same folder, the path would be externalfile.as. If
externalfile.as was in a subfolder called scripts, the path would be scripts/
externalfile.as.

Choosing Actions panel options

The Actions panel allows you to work with scripts in a variety of ways. You can
change the font size in the Script window. You can import a text file containing
ActionScript into the Actions panel and export actions as a text file, search and
replace text in a script, and use syntax highlighting to make scripts easier to read
and errors easier to detect. The Actions panel displays warning highlights for
syntax errors and Flash Player version incompatibilities. It also highlights
deprecated, or no longer preferable, ActionScript elements.

These Actions panel options are available in both Normal and Expert Modes
unless otherwise noted.
Chapter 136

To change the font size in the Script window:

1 From the pop-up menu at the upper right of the Actions panel, choose Font
Size.

2 Select Small, Normal, or Large.

To import a text file containing ActionScript:

1 From the pop-up menu at the upper right of the Actions panel, choose Import
from File.

2 Select a text file containing ActionScript, and click Open.

Note: Scripts with syntax errors can only be imported in Expert mode. In Normal mode,
you’ll receive an error message.

To export actions as a text file:

1 From the pop-up menu at the upper right of the Actions panel, Choose Export
as File.

2 Choose a location where the file will be saved, and click Save.

To print actions:

1 From the pop-up menu at the upper right of the Actions panel, choose Print.

The Print dialog box appears.

2 Choose Options and click Print.

Note: The printed file will not include information about its originating Flash file. It’s a good
idea to include this information in a comment action in the script.

To search for text in a script, choose an option from the Actions panel pop-up
menu:

• Choose Goto Line to go to a specific line in a script.

• Choose Find to find text.

• Choose Find Again to find text again.

• Choose Replace to find and replace text.

In Expert mode, Replace scans the entire body of text in a script. In Normal
Mode, Replace searches and replaces text only in the parameter field of each
action. For example, you cannot replace all gotoAndPlay actions with
gotoAndStop in Normal Mode.

Note: Use the Find or Replace command to search the current Actions list. To search
through text in every script in a movie, use the Movie Explorer. For more information, see
Using Flash.
Understanding ActionScript 37

Highlighting and checking syntax

Syntax highlighting identifies certain ActionScript elements with specific colors.
This helps prevent syntax errors such as incorrect capitalization of keywords. For
example, if the keyword typeof was spelled typeOf, it would not be blue and you
could recognize the error. When syntax highlighting is turned on, text is
highlighted in the following way:

• Keywords and predefined identifiers (for example, gotoAndStop, play, and
stop) are blue.

• Properties are green.

• Comments are magenta.

• Strings surrounded by quotation marks are gray.

To turn syntax highlighting on or off:

Choose Colored Syntax from the pop-up menu at the upper right of the Actions
panel. A check mark indicates that the option is turned on. All scripts in your
movie will be highlighted.

It’s a good idea to check a script’s syntax for errors before exporting a movie.
Errors are reported in the Output window. You can export a movie that contains
erroneous scripts. However, you will be warned that scripts containing errors were
not exported.

To check the script’s syntax for errors:

Choose an option from the pop-up menu at the upper right of the Actions panel.

• Check Syntax checks the current Actions list for errors.

About error highlighting

All syntax errors are highlighted with a solid red background in the Script window
in Normal Mode. This makes it easy to spot problems. If you move the mouse
pointer over an action with incorrect syntax, a tooltip displays the error message
associated with that action. When you select the action, the error message is also
displayed in the pane title of the parameters area.

In Normal Mode all ActionScript export incompatibilities are highlighted with a
solid yellow background in the Script window. For example, if the Flash Player
export version is set to Flash 4, ActionScript that is supported only by the Flash 5
Player is highlighted in yellow. The export version is determined in the Publish
Settings dialog.

All deprecated actions are highlighted with a green background in the toolbox.
Deprecated actions are only highlighted when the Flash export version is set to
Flash 5.
Chapter 138

To set the Flash Player export version:

1 Choose File > Publish Settings.

2 Click the Flash tab.

3 Choose an export version from the Version pop-up menu.

Note: You cannot turn off syntax error highlighting.

To show deprecated syntax highlighting:

Choose Show Deprecated Syntax from the Actions panel pop-up menu.

For a complete list of all error messages, see Appendix D, “Error Messages.”

Assigning actions to objects
You can assign an action to a button or a movie clip to make an action execute
when the user clicks a button or rolls the pointer over it, or when the movie clip
loads or reaches a certain frame. You assign the action to an instance of the button
or movie clip; other instances of the symbol aren’t affected. (To assign an action to
a frame, see Assigning actions to frames.)

When assigning an action to a button, you specify the mouse events that trigger
the action. You can also assign a keypress that triggers the action. To assign actions
to a movie clip, you must specify the clip event that triggers the action.

The following instructions describe how to assign actions to objects using the
Actions panel in Normal Mode.

Once you’ve assigned an action, use the Control > Test Movie command to test
whether it works. Most actions won’t work in editing mode.

To assign an action to a button or movie clip:

1 Select a button or movie clip instance and choose Window > Actions.

If the selection is not a button, a movie clip instance, or a frame, or if the
selection includes multiple objects, the Actions panel is dimmed.

2 Choose Normal Mode from the pop-up menu at the upper right of the Object
Actions panel.

3 To assign an action, do one of the following:

• Click the Actions folder in the Toolbox list on the left side of the Actions panel.
Double-click an action to add it to the Actions list on the right side of the
panel.

• Drag an action from the Toolbox list to the Actions list.

• Click the Add (+) button and choose an action from the pop-up menu.
Understanding ActionScript 39

• Use the keyboard shortcut listed next to each action in the pop-up menu.

Selecting an object from the toolbox in Normal Mode

4 In the Parameters fields at the bottom of the panel, select parameters for the
action as needed.

Parameters vary depending on the action you choose. For detailed information
on the required parameters for each action, see Chapter 7, “ActionScript
Dictionary.” To insert a Target path for a movie clip into a parameter field, click
the Target Path button in the lower right corner of the Actions panel. For more
information, see Chapter 4, “Working with Movie Clips.”

5 Repeat steps 3 and 4 to assign additional actions as necessary.

To test an object action:

Choose Control > Test Movie.

Assigning actions to frames
To make a movie do something when it reaches a keyframe, you assign a frame
action to the keyframe. For example, to create a loop in the Timeline between
frames 20 and 10, you would add the following frame action to frame 20:

gotoAndPlay (10);
Chapter 140

It’s a good idea to place frame actions in a separate layer. Frames with actions
display a small a in the Timeline.

An “a” in a keyframe indicates a frame action.

Once you’ve assigned an action, choose Control > Test Movie to test whether it
works. Most actions won’t work in editing mode.

The following instructions describe how to assign frame actions using the Actions
panel in Normal Mode. (For information on assigning an action to a button or
movie clip, see <<xref>>.)

To assign an action to a keyframe:

1 Select a keyframe in the Timeline and choose Window > Actions.

If a selected frame is not a keyframe, the action is assigned to the previous
keyframe. If the selection is not a frame, or if the selection includes multiple
keyframes, the Actions panel is dimmed.

2 Choose Normal Mode from the pop-up menu at the upper right of the Frame
Actions panel.

3 To assign an action, do one of the following:

• Click the Actions folder in the Toolbox list on the left side of the Actions panel.
Double-click an action to add it to the Actions list on the right side of the
panel.

• Drag an action from the Toolbox list to the Actions list.

• Click the Add (+) button and choose an action from the pop-up menu.

• Use the keyboard shortcut listed next to each action in the pop-up menu.

• In the Parameters fields at the bottom of the panel, select parameters for the
action as needed.

4 Repeat steps 3 and 4 to assign additional actions as necessary.

To test a frame action:

Choose Control > Test Movie.

indicates a frame action
Understanding ActionScript 41

Chapter 142

CHAPTER 2

. .. .
Writing Scripts with ActionScript

When you create scripts in ActionScript, you can choose the level of detail you
want to use. To use simple actions, you can use the Actions panel in Normal Mode
and build scripts by choosing options from menus and lists. However, if you want
to use ActionScript to write more powerful scripts, you must understand how
ActionScript works as a language.

Like other scripting languages, ActionScript consists of components such as
predefined objects and functions, and it allows you to create your own objects and
functions. ActionScript follows its own rules of syntax, reserves keywords,
provides operators, and allows you to use variables to store and retrieve
information.

ActionScript’s syntax and style closely resemble that of JavaScript. Flash 5
performs conversions on ActionScript written in any previous version of Flash.

Using ActionScript’s syntax
ActionScript has rules of grammar and punctuation that determine which
characters and words are used to create meaning and in which order they can be
written. For example, in English, a period ends a sentence. In ActionScript, a
semicolon ends a statement.

The following are general rules that apply to all ActionScript. Most ActionScript
terms also have their own individual requirements; for the rules for a specific term,
see the its entry in Chapter 7, “ActionScript Dictionary.”
Writing Scripts with ActionScript 43

Dot syntax

In ActionScript, a dot (.) is used to indicate the properties or methods related to
an object or movie clip. It is also used to identify the target path to a movie clip or
variable. A dot syntax expression begins with the name of the object or movie clip
followed by a dot, and ends with the property, method, or variable you want to
specify.

For example, the _x movie clip property indicates a movie clip’s x axis position on
the Stage. The expression ballMC._x refers to the _x property of the movie clip
instance ballMC.

As another example, submit is a variable set in the movie clip form which is
nested inside the movie clip shoppingCart. The expression
shoppingCart.form.submit = true sets the submit variable of the instance
form to true.

Expressing a method of an object or movie clip follows the same pattern. For
example, the play method of the ballMC instance moves the playhead in the
Timeline of ballMC, as in the following statement:

ballMC.play();

Dot syntax also uses two special aliases, _root and _parent. The alias _root
refers to the main Timeline. You can use the _root alias to create an absolute
target path. For example, the following statement calls the function
buildGameBoard in the movie clip functions on the main Timeline:

_root.functions.buildGameBoard();

You can use the alias _parent to refer to a movie clip in which the current movie
clip is nested. You can use _parent to create a relative target path. For example, if
the movie clip dog is nested inside the movie clip animal, the following
statement on the instance dog tells animal to stop:

_parent.stop();

See Chapter 4, “Working with Movie Clips.”

Slash syntax

Slash syntax was used in Flash 3 and 4 to indicate the target path of a movie clip
or variable. This syntax is still supported by the Flash 5 Player, but its use is not
recommended. In slash syntax, slashes are used instead of dots to indicate the path
to a movie clip or variable. To indicate a variable, you precede the variable with a
colon as in the following:

myMovieClip/childMovieClip:myVariable

You can write the same target path in dot syntax, as in the following:

myMovieClip.childMovieClip.myVariable
Chapter 244

Slash syntax was most commonly used with the tellTarget action, whose use is
also no longer recommended.

Note: The with action is now preferred over tellTarget because it is more compatible
with dot syntax. For more information, see their individual entries in Chapter 7,
“ActionScript Dictionary.”

Curly braces

ActionScript statements are grouped together into blocks with curly braces ({ }),
as in the following script:

on(release) {
 myDate = new Date();
 currentMonth = myDate.getMonth();
}

See Writing actions in ActionScript.

Semicolons

An ActionScript statement is terminated with a semicolon, but if
you omit the terminating semicolon, Flash will still compile your
script successfully. For example, the following statements are
terminated with semicolons:
column = passedDate.getDay();
row = 0;

The same statements could be written without the terminating semicolons:

column = passedDate.getDay()
row = 0

Parentheses

When you define a function, place any arguments inside parentheses:

function myFunction (name, age, reader){
...

}

When you call a function, include any arguments passed to the function in
parentheses, as shown here:

myFunction (“Steve”, 10, true);

You can also use parentheses to override ActionScript’s order of precedence or to
make your ActionScript statements easier to read. See Operator precedence.
Writing Scripts with ActionScript 45

You also use parentheses to evaluate an expression on the left side of a dot in dot
syntax. For example, in the following statement, the parentheses cause new
color(this) to evaluate and create a new color object:

onClipEvent(enterFrame) {
(new Color(this)).setRGB(0xffffff));

}

If you didn’t use parentheses, you would need to add a statement to the code to
evaluate it:

onClipEvent(enterFrame) {
myColor = new Color(this);
myColor.setRGB(0xffffff);

}

Uppercase and lowercase letters

Only keywords in ActionScript are case sensitive; with the rest of ActionScript,
you can use uppercase and lowercase letters however you want. For example, the
following statements are equivalent:

cat.hilite = true;
CAT.hilite = true;

However, it’s a good habit to follow consistent capitalization conventions, such as
the ones used in this book, to make it is easier to identify names of functions and
variables when reading ActionScript code.

If you don’t use correct capitalization with keywords, your script will have errors.
When Colored Syntax is turned on in the Actions panel, keywords written with
the correct capitalization are blue. For more information, see Keywords and
<<xref>>.

Comments

In the Actions panel, use the comment statement to add notes to a frame or button
action when you want to keep track of what you intended an action to do.
Comments are also useful for passing information to other developers if you work
in a collaborative environment or are providing samples.
Chapter 246

When you choose the comment action, the characters // are inserted into the
script. Even a simple script is easier to understand if you make notes as you create
it:

on(release) {
 // create new Date object
 myDate = new Date();
 currentMonth = myDate.getMonth();
 // convert month number to month name
 monthName = calcMonth(currentMonth);
 year = myDate.getFullYear();
 currentDate = myDate.getDat ();
}

Comments appear in pink in the Script window. They can be any length without
affecting the size of the exported file, and they do not need to follow rules for
ActionScript syntax or keywords.

Keywords

ActionScript reserves words for specific use within the language, so you can’t use
them as variable, function, or label names. The following table lists all
ActionScript keywords:

For more information about a specific keyword, see its entry in Chapter 7,
“ActionScript Dictionary.”

Constants

A constant is a property whose value never changes. Constants are listed in the
Actions Toolbox and in Chapter 7, “ActionScript Dictionary,” in all uppercase
letters.

For example, the constants BACKSPACE, ENTER, QUOTE, RETURN, SPACE, and TAB
are properties of the Key object and refer to keyboard keys. To test whether the
user is pressing the Enter key, use the following statement:

if(keycode() == Key.ENTER) {
alert = "Are you ready to play?"
controlMC.gotoAndStop(5);

}

break for new var

continue function return void

delete if this while

else in typeof with
Writing Scripts with ActionScript 47

About data types
A data type describes the kind of information a variable or ActionScript element
can hold. There are two kinds of data types: primitive and reference. The primitive
data types—string, number, and Boolean—have a constant value and therefore
can hold the actual value of the element they represent.The reference data types—
movie clip and object—have values that can change and therefore contain
references to the actual value of the element. Variables containing primitive data
types behave differently in certain situations than those containing reference
types. See Using variables in a script.

Each data type has its own rules and is listed here. References are included for data
types that are discussed in more detail.

String

A string is a sequence of characters such as letters, numbers, and punctuation
marks. You enter strings in an ActionScript statement by enclosing them in single
or double quotation marks. Strings are treated as characters instead of as variables.
For example, in the following statement, "L7" is a string:

favoriteBand = "L7";

You can use the addition (+) operator to concatenate, or join, two strings.
ActionScript treats spaces at the beginning or end of a string as a literal part of the
string. The following expression includes a space after the comma:

greeting = "Welcome, " + firstName;

Although ActionScript does not distinguish between uppercase and lowercase in
references to variables, instance names, and frame labels, literal strings are case
sensitive. For example, the following two statements place different text into the
specified text field variables, because "Hello" and "HELLO" are literal strings.

invoice.display = "Hello";
invoice.display = "HELLO";

To include a quotation mark in a string, precede it with a backslash character (\).
This is called “escaping” a character. There are other characters that cannot be
represented in ActionScript except by special escape sequences. The following
table provides all the ActionScript escape characters:

Escape sequence Character

\b Backspace character (ASCII 8)

\f Form-feed character (ASCII 12)

\n Line-feed character (ASCII 10)

\r Carriage return character (ASCII 13)
Chapter 248

Number

The number data type is a double-precision floating-point number. You can
manipulate numbers using the arithmetic operators addition (+), subtraction (-),
multiplication, (*), division (/), modulo (%), increment (++) and decrement (--).
You can also use methods of the predefined Math object to manipulate numbers.
The following example uses the sqrt (square root) method to return the square
root of the number 100:

Math.sqrt(100);

See Numeric operators.

Boolean

A Boolean value is one that is either true or false. ActionScript also converts the
values true and false to 1 and 0 when appropriate. Boolean values are most
often used with logical operators in ActionScript statements that make
comparisons to control the flow of a script. For example, in the following script,
the movie plays if the variable password is true:

onClipEvent(enterFrame) {
 if ((userName == true) && (password == true)){
 play();
 }
}

See Using if statements and Logical operators.

\t Tab character (ASCII 9)

\" Double quotation mark

\' Single quotation mark

\\ Backslash

\000 - \377 A byte specified in octal

\x00 - \xFF A byte specified in hexadecimal

\u0000 - \uFFFF A 16-bit Unicode character specified in hexadecimal

Escape sequence Character

\b Backspace character (ASCII 8)
Writing Scripts with ActionScript 49

Object

An object is a collection of properties. Each property has a name and a value. The
value of a property can be any Flash data type, even the object data type. This
allows you to arrange objects inside each other, or “nest” them. To specify objects
and their properties, you use the dot (.) operator. For example, in the following
code, hoursWorked is a property of weeklyStats, which is a property of
employee:

employee.weeklyStats.hoursWorked

You can use ActionScript’s predefined objects to access and manipulate specific
kinds of information. For example, the Math object has methods that perform
mathematical operations on numbers you pass to them. This example uses the
sqrt method:

squareRoot = Math.sqrt(100);

The ActionScript MovieClip object has methods that let you control movie clip
symbol instances on the Stage. This example uses the play and nextFrame
methods:

mcInstanceName.play();
mc2InstanceName.nextFrame();

You can also create your own objects so that you can organize information in your
movie. To add interactivity to a movie with ActionScript, you’ll need many
different pieces of information: for example, you might need a user’s name, the
speed of a ball, the names of items in a shopping cart, the number of frames
loaded, the user’s zip code, and which key was pressed last. Creating custom
objects allows you to organize this information into groups, simplify your
scripting, and reuse your scripts. For more information, see Using custom objects.

Movie clip

Movie clips are symbols that can play animation in a Flash movie. They are the
only data type that refers to a graphical element. The movie clip data type allows
you to control movie clip symbols using the methods of the MovieClip object.
You call the methods using the dot (.) operator, as shown here:

myClip.startDrag(true);
parentClip.childClip.getURL("http://www.macromedia.com/support/"
+ product);

About variables
A variable is a container that holds information. The container itself is always the
same, but the contents can change. By changing the value of a variable as the
movie plays, you can record and save information about what the user has done,
record values that change as the movie plays, or evaluate whether some condition
is true or false.
Chapter 250

It’s a good idea always to assign a variable a known value the first time you define
the variable. This is known as initializing a variable and is often done in the first
frame of the movie. Initializing variables makes it easier to track and compare the
variable’s value as the movie plays.

Variables can hold any type of data: number, string, Boolean, object, or movie
clip. The type of data a variable contains affects how the variable’s value changes
when it is assigned in a script.

Typical types of information you can store in a variable include a URL, a user’s
name, the result of a mathematical operation, the number of times an event
occurred, or whether a button has been clicked. Each movie and movie clip
instance has its own set of variables, with each variable having its own value
independent of variables in other movies or movie clips.

Naming a variable

A variable’s name must follow these rules:

• It must be an identifier. (See <<xref>>.)

• It cannot be a keyword or a Boolean literal (true or false).

• It must be unique within its scope. (See Scoping a variable.)

Typing a variable

In Flash, you do not have to explicitly define a variable as holding either a
number, a string, or other data type. Flash determines the data type of a variable
when the variable is assigned:

x = 3;

In the expression x = 3 Flash evaluates the element on the right side of the
operator and determines that it is of type number. A later assignment may change
the type of x; for example, x = "hello" changes the type of x to a string. A
variable that hasn’t been assigned a value has a type of undefined.

ActionScript converts data types automatically when an expression requires it. For
example, when you pass a value to the trace action, trace automatically converts
the value to a string and sends it to the Output window. In expressions with
operators, ActionScript converts data types as needed; for example, when used
with a string, the + operator expects the other operand to be a string:

"Next in line, number " + 7

ActionScript converts the number 7 to the string "7" and adds it to the end of the
first string, resulting in the following string:

"Next in line, number 7"
Writing Scripts with ActionScript 51

When you debug scripts, it’s often useful to determine the data type of an
expression or variable to understand why it is behaving a certain way. You can do
this with the typeof operator, as in this example:

trace(typeof(variableName));

To convert a string to a numerical value, use the Number function. To convert a
numerical value to a string, use the String function. See their individual entries
in Chapter 7, <<xref>>.

Scoping a variable

A variable’s “scope” refers to the area in which the variable is known and can be
referenced. Variables in ActionScript can be either global or local. A global
variable is shared among all Timelines; a local variable is only available within its
own block of code (between the curly braces).

You can use the var statement to declare a local variable inside a script. For
example, the variables i and j are often used as loop counters. In the following
example, i is used as a local variable; it only exists inside the function makeDays:

function makeDays(){
var i
for(i = 0; i < monthArray[month]; i++) {

_root.Days.attachMovie("DayDisplay", i, i + 2000);

_root.Days[i].num = i + 1;
_root.Days[i]._x = column * _root.Days[i]._width;
_root.Days[i]._y = row * _root.Days[i]._height;

column = column + 1;

if (column == 7) {

column = 0;
row = row + 1;

}
}

}

Local variables can also help prevent name collisions, which can cause errors in
your movie. For example, if you use name as a local variable, you could use it to
store a user name in one context and a movie clip instance name in another;
because these variables would run in separate scopes, there would be no collision.

It’s good practice to use local variables in the body of a function so that the
function can act as an independent piece of code. A local variable is only
changeable within its own block of code. If an expression in a function uses a
global variable, something outside the function could change its value, which
would change the function.
Chapter 252

Variable declaration

To declare global variables, use the setVariables action or the assignment (=)
operator. Both methods achieve the same results.

To declare local variables, use the var statement inside the body of a function.
Local variables are scoped to the block, and expire at the end of the block. Local
variables not declared within a block expire at the end of their script.

Note: The call action also creates a new local variable scope for the script it calls. When
the called script exits, this local variable scope disappears. However, this is not
recommended because the call action has been replaced by the with action which is
more compatible with dot syntax.

To test the value of a variable, use the trace action to send the value to the
Output window. For example, trace(hoursWorked) sends the value of the
variable hoursWorked to the Output window in test-movie mode. You can also
check and set the variable values in the Debugger in test-movie mode. For more
information, see Chapter 6, “Troubleshooting ActionScript.”

Using variables in a script

You must declare a variable in a script before you can use it in an expression. If
you use an undeclared variable, as in the following example, the variable’s value
will be undefined and your script will generate an error:

getURL(myWebSite);
myWebSite = "http://www.shrimpmeat.net";

The statement declaring the variable myWebSite must come first so that the
variable in the getURL action can be replaced with a value.

You can change the value of a variable many times in a script. The type of data
that the variable contains affects how and when the variable changes. Primitive
data types, such as strings and numbers, are passed by value. This means that the
actual content of the variable is passed to the variable.

In the following example, x is set to 15 and that value is copied into y. When x is
changed to 30, the value of y remains 15 because y doesn’t look to x for its value;
it contains the value of x that it was passed.

var x = 15;
var y = x;
var x = 30;
Writing Scripts with ActionScript 53

As another example, the variable in contains a primitive value, 9, so the actual
value is passed to the sqrt function and the returned value is 3:

function sqrt(x){
 return x * x;
}

var in = 9;
var out = sqr(in);

The value of the variable in does not change.

The object data type can contain such a large and complex amount of information
that a variable with this type doesn’t hold the actual value; it holds a reference to
the value. This reference is like an alias that points to the contents of the variable.
When the variable needs to know its value, the reference asks for the contents and
returns the answer without transferring the value to the variable.

The following is an example of passing by reference:

var myArray = ["tom", "dick"];
var newArray = myArray;
myArray[1] = "jack";
trace(newArray);

The above code creates an Array object called myArray that has two elements. The
variable newArray is created and passed a reference to myArray. When the second
element of myArray is changed, it affects every variable with a reference to it. The
trace action would send ["tom", "jack"] to the Output window.

In the next example, myArray contains an Array object, so it is passed to function
zeroArray by reference. The zeroArray function changes the content of the
array in myArray.

function zeroArray (array){
 var i;
 for (i=0; i < array.length; i++) {
 array[i] = 0;
 }
}

var myArray = new Array();
myArray[0] = 1;
myArray[1] = 2;
myArray[2] = 3;

var out = zeroArray(myArray)

The function zeroArray accepts an Array object as an argument and sets all the
elements of that array to 0. It can modify the array because the array is passed by
reference.
Chapter 254

References to all objects other than movie clips are called hard references because if
an object is referenced, it cannot be deleted. A reference to a movie clip is a special
kind of reference called a soft reference. Soft references do not force the referenced
object to exist. If a movie clip is destroyed with an action such as
removeMovieClip, any reference to it will no longer work.

Using operators to manipulate values in
expressions
An expression is any statement that Flash can evaluate that will return a value. You
can create an expression by combining operators and values, or by calling a
function. When you write an expression in the Actions panel in Normal Mode,
make sure the Expression box is checked in the Parameters pane, otherwise the
field will contain the literal value of a string.

Operators are characters that specify how to combine, compare, or modify the
values of an expression. The elements that the operator performs on are called
operands. For example, in the following statement, the + operator adds the value
of a numeric literal to the value of the variable foo; foo and 3 are the operands:

foo + 3

This section describes general rules about common types of operators. For
detailed information on each operator mentioned here, as well as special operators
that don’t fall into these categories, see Chapter 7, “ActionScript Dictionary.”

Expression box
Writing Scripts with ActionScript 55

Operator precedence

When two or more operators are used in the same statement, some operators take
precedence over others. ActionScript follows a precise hierarchy to determine
which operators to execute first. For example, multiplication is always performed
before addition; however, items in parentheses take precedence over
multiplication. So, without parentheses, ActionScript performs the multiplication
in the following example first:

total = 2 + 4 * 3;

The result is 14.

But when parentheses surround the addition operation, ActionScript performs the
addition first:

total = (2 + 4) * 3;

The result is 18.

For a table of all operators and their precedence, see Appendix B, “Operator
Precedence and Associativity.”

Operator associativity

When two or more operators share the same precedence, their associativity
determines the order in which they are performed. Associativity can either be left-
to-right or right-to-left. For example, the multiplication operator has an
associativity of left-to-right; therefore, the following two statements are
equivalent:

total = 2 * 3 * 4;
total = (2 * 3) * 4;

For a table of all operators and their associativity, see Appendix B, “Operator
Precedence and Associativity.”

Numeric operators

Numeric operators add, subtract, multiply, divide, and perform other arithmetic
operations. Parentheses and the minus sign are arithmetic operators. The
following table lists ActionScript’s numeric operators:

Operator Operation performed

+ Addition

* Multiplication

/ Division

% Modulo
Chapter 256

Comparison operators

Comparison operators compare the values of expressions and return a Boolean
value (true or false). These operators are most commonly used in loops and in
conditional statements. In the following example, if variable score is 100, a
certain movie loads; otherwise, different movie loads:

if (score == 100){
loadMovie("winner.swf", 5);

} else {
loadMovie(“loser.swf", 5);
}

The following table lists ActionScript’s comparison operators:

String operators

The + operator has a special effect when it operates on strings: it concatenates the
two string operands. For example, the following statement adds
"Congratulations," to "Donna!":

"Congratulations, " + "Donna!"

The result is "Congratulations, Donna!" If only one of the + operator’s
operands is a string, Flash converts the other operand to a string.

The comparison operators, >, >=, <, and <= also have a special effect when
operating on strings. These operators compare two strings to determine which is
first in alphabetical order. The comparison operators only compare strings if both
operands are strings. If only one of the operands is a string, ActionScript converts
both operands to numbers and performs a numeric comparison.

Note: ActionScript’s data typing in Flash 5 allows the same operators to be used on
different types of data. It is no longer necessary to use the Flash 4 string operators (for
example, eq, ge, and lt) unless you are exporting as a Flash 4 movie.

- Subtraction

++ Increment

-- Decrement

Operator Operation performed

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal
Writing Scripts with ActionScript 57

Logical operators

Logical operators compare Boolean (true and false) values and return a third
Boolean value. For example, if both operands evaluate to true, the logical AND
operator (&&) returns true. If one or both of the operands evaluate to true, the
logical OR operator (||) returns false. Logical operators are often used in
conjunction with comparison operators to determine the condition of an if
action. For example, in the following script, if both expressions are true, the if
action will execute:

if ((i > 10) && (_framesloaded > 50)){
play()

}

The following table lists ActionScript’s logical operators:

Bitwise operators

Bitwise operators internally manipulate floating-point numbers to change them
into 32-bit integers, which are easier to work with. The exact bitwise operation
performed depends on the operator, but all bitwise operations evaluate each digit
of a floating-point number separately to compute a new value.

The following table lists ActionScript’s bitwise operators:

Operator Operation performed

&& Logical AND

|| Logical OR

! Logical NOT

Operator Operation performed

& Bitwise And

| Bitwise Or

^ Bitwise Xor

~ Bitwise Not

<< Shift left

>> Shift right

>>> Shift right zero fill
Chapter 258

Equality and assignment operators

You can use the equality (==) operator to determine whether the values or
identities of two operands are equal. This comparison returns a Boolean (true or
false) value. If the operands are strings, numbers, or Boolean values, they are
compared by value. If the operands are objects or arrays, they are compared by
reference.

You can use the assignment (=) operator to assign a value to a variable, as in the
following:

password = “Sk8tEr”;

You can also use the assignment operator to assign multiple variables in the same
expression. In the following statement, the value of b is assigned to the variables c,
and d:

a = b = c = d;

You can also use compound assignment operators to combine operations.
Compound operators perform on both operands and then assign that new value
to the first operand. For example, the following two statements are equivalent:

x += 15;
x = x + 15;

The following table lists ActionScript’s equality and assignment operators:

Operator Operation performed

== Equality

!= Inequality

= Assignment

+= Addition and assignment

-= Subtraction and assignmnet

*= Multiplication and assignment

%= Modulo and assignment

/= Division and assignment

<<= Bitwise shift left and assignment

>>= Bitwise shift right and assignment

>>>= Shift right zero fill and assignment

^= Bitwise Xor and assignment
Writing Scripts with ActionScript 59

Dot and array access operators

You can use the dot operator (.) and the array access operator ([]) to access any
predefined or custom ActionScript object properties, including those of a movie
clip.

The dot operator uses the name of an object on its left side and the name of a
property or variable on its right side. The property or variable name can’t be a
string or a variable that evaluates to a string; it must be an identifier. The following
are examples using the dot operator:

year.month = "June";
year.month.day = 9;

The dot operator and the array access operator perform the same role, but the dot
operator takes an identifier as its property and the array access operator evaluates
its contents to a name and then accesses the value of that named property. For
example, the following two lines of code access the same variable velocity in the
movie clip rocket:

rocket.velocity;
rocket["velocity"];

You can use the array access operator to dynamically set and retrieve instance
names and variables. For example, in the following code, the expression inside the
[] operator is evaluated and the result of the evaluation is used as the name of the
variable to be retrieved from movie clip name:

name["mc" + i]

If you are familiar with the Flash 4 ActionScript slash syntax, you may have done
the same thing using the eval function, as in the following:

eval("mc" & i);

The array access operator can also be used on the left side of an assignment
statement. This allows you to dynamically set instance, variable, and object
names, as in the following example:

name[index] = "Gary";

Again, this is equivalent to the following Flash 4 ActionScript slash syntax:

Set Variable: "name:" & index = "Gary"

The array access operator can also be nested with itself to simulate
multidimensional arrays.

chessboard[row][column]

|= Bitwise Or and assignment

&= Bitwise And and assignment
Chapter 260

This is equivalent to the following slash syntax:

eval("chessboard/" & row & ":" & column)

Note: If you want to write ActionScript that is compatible with the Flash 4 Player, you can
use the eval action with the add operator.

Writing actions in ActionScript
Actions are ActionScript’s statements, or commands. Multiple actions assigned to
the same frame or object create a script. Actions can act independently of each
other, as in the following statements:

swapDepths("mc1", "mc2");
gotoAndPlay(15);

You can also nest actions by using one action inside another; this allows actions to
affect each other. In the following example, the if action tells the gotoAndPlay
action when to execute:

if (i >= 25) {
 gotoAndPlay(10);
}

Actions can move the playhead in the Timeline (gotoAndPlay), control the flow
of a script by creating loops (do while) or conditional logic (if), or create new
functions and variables (function, setVariable). The following table lists all
ActionScript actions:

For syntax and usage examples of each action, see individual entries in Chapter 7,
“ActionScript Dictionary.”

break evaluate include print stopDrag

call for loadMovie printAsBitmap swapDepths

comment for...in loadVariables removeMovieClip tellTarget

continue fsCommand nextFrame
nextScene

return toggleHighQual
ity

delete function on setVariable stopDrag

do...while getURL onClipEvent setProperty trace

duplicateMovie
Clip

gotoAndPlay
gotoAndStop

play startDrag unloadMovie

else if prevFrame stop var

else if ifFrameLoaded prevScene stopAllSounds while
Writing Scripts with ActionScript 61

Note: In this book, the ActionScript term action is synonymous with the JavaScript term
statement.

Writing a target path

To use an action to control a movie clip or loaded movie, you must specify its
name and its address, called a target path. The following actions take one or more
target paths as arguments:

• loadMovie

• loadVariables

• unloadMovie

• setProperty

• startDrag

• duplicateMovieClip

• removeMovieClip

• print

• printAsBitmap

• tellTarget

For example, the loadMovie action takes the arguments URL, Location, and
Variables. The URL is the location on the Web of the movie you want to load.
The Location is the target path into which the movie will be loaded.

loadMovie(URL, Location, Variables);

Note: The Variables argument is not required for this example.

The following statement loads the URL http://www.mySite.com/myMovie.swf into
the instance bar on the main Timeline, _root; _root.bar is the target path;

loadMovie("http://www.mySite.com/myMovie.swf", _root.bar);

In ActionScript you identify a movie clip by its instance name. For example, in the
following statement, the _alpha property of the movie clip named star is set to
50% visibility:

star._alpha = 50;

To give a movie clip an instance name:

1 Select the movie clip on the Stage.

2 Choose Window > Panels > Instance.

3 Enter an instance name in the Name field.
Chapter 262

To identify a loaded movie:

Use _levelX where X is the level number specified in the loadMovie action that
loaded the movie.

For example, a movie loaded into level 5 has the instance name _level5. In the
following example, a movie is loaded into level 5 and its visibility is set to false:

onClipEvent(load) {
 loadMovie("myMovie.swf", 5);
}
onClipEvent(enterFrame) {

_level5._visible = false;
}

To enter a movie’s target path:

Click the Target Path button in the Actions panel, and select a movie clip from the
list that appears.

For more information about writing target paths, see Chapter 4, “Working with
Movie Clips.”

To target a movie using an expression:

Use the predefined function targetPath to evaluate the expression and use the
returned value as the instance name.

This allows you to dynamically create variable names and dynamically target
movies anywhere in the display list (the hierarchical tree of all movie clips in a
movie). The following in an example of using targetPath:

tellTarget(targetPath(Board.Block[index*2+1])) {
play();

}

If you are familiar with Flash 4 ActionScript, this use of targetPath is equivalent
to the slash syntax:

tellTarget("Board/Block:" + (index*2+1)) {
play();

}

Controlling flow in scripts
ActionScript uses if, for, while, do...while, and for...in actions to perform
an action depending on whether a condition exists.
Writing Scripts with ActionScript 63

Using if statements

Statements that check whether a condition is true or false begin with the term if.
If the condition exists, ActionScript executes the statement that follows. If the
condition doesn’t exist, ActionScript skips to the next statement outside the block
of code.

To optimize your code’s performance, check for the most likely conditions first.

The following statements test several conditions. The term else if specifies
alternative tests to perform if previous conditions are false.

if ((password == null) || (email == null)){
gotoAndStop(“reject”);

} else {
gotoAndPlay(“startMovie”);

}

Repeating an action

ActionScript can repeat an action a specified number of times or while a specific
condition exists. Use the while, do...while, for, and for...in actions to
create loops.

To repeat an action while a condition exists:

Use the while statement.

A while loop evaluates an expression and executes the code in the body of the
loop if the expression is true. After each statement in the body is executed, the
expression is evaluated again. In the following example, the loop executes four
times:

i = 4
while (i > 0) {

myMC.duplicateMovieClip(“newMC” + i, i);
i --;

}

You can use the do...while statement to create the same kind of loop as a while
loop. In a do...while loop the expression is evaluated at the bottom of the code
block so the loop always runs at least once, as in the following:

i = 4
do {

myMC.duplicateMovieClip(“newMC” +i, i);
i --;

} while (i > 0);

To repeat an action using a built-in counter:

Use the for statement.
Chapter 264

Most loops use a counter of some kind to control how many times the loop runs.
You can declare a variable and write a statement that increases or decreases the
variable each time the loop executes. In the for action, the counter and the
statement that increments the counter are part of the action, as in the following:

for (i = 4; i > 0; i--){
myMC.duplicateMovieClip(“newMC” + i, i + 10);

}

To loop through the children of a movie clip or object:

Use the for..in statement.

Children include other movie clips, functions, objects, and variables. The
following example uses trace to print its results in the Output window:

myObject = { name:'Joe', age:25, city:'San Francisco' };
for (propertyName in myObject) {
 trace("myObject has the property: " + propertyName + ", with the
value: " + myObject[propertyName]);
}

This example produces the following results in the Output window:

myObject has the property: name, with the value: Joe
myObject has the property: age, with the value: 25
myObject has the property: city, with the value: San Francisco

You may want your script to iterate over a particular type of child—for example,
over only movie clip children. You can do this with for...in in conjunction with
the typeof operator.

for (name in myMovieClip) {
 if (typeof (myMovieClip[name]) == "movieclip") {
 trace("I have a movie clip child named " + name);
 }
}

Note: The for..in statement iterates over properties of objects in the iterated object's
prototype chain. If a child object’s prototype is parent, for..in will also iterate over the
properties of parent. See Creating inheritance.

For more information on each action, see individual entries in Chapter 7,
“ActionScript Dictionary.”
Writing Scripts with ActionScript 65

Using predefined functions
A function is a block of ActionScript code that can be reused anywhere in a movie.
If you pass specific values called arguments to a function, the function will operate
on those values. A function can also return values. Flash has predefined functions
that allow you to access certain information and perform certain tasks, such as
collision detection (hitTest), getting the value of the last key pressed (keycode),
and getting the version number of the Flash Player hosting the movie
(getVersion).

Calling a function

You can call a function in any Timeline from any Timeline, including a loaded
movie. Each function has its own characteristics and some require you to pass
certain values. If you pass more arguments than the function requires, the extra
values are ignored. If you don’t pass a required argument, the empty arguments are
assigned the undefined data type, which can cause errors when you export a
script. To call a function, it must be in a frame that the playhead has reached.

Flash’s predefined functions are listed in the following table:

Note: String functions are deprecated and are not listed in the above table.

To call a function in Expert Mode:

Use the name of the function. Pass any required arguments inside parentheses.

The following example calls the initialize function which requires no
arguments:

initialize();

Boolean getTimer isFinite newline scroll

escape getVersion isNaN number String

eval globalToLocal keycode parseFloat targetPath

false hitTest localToGlobal parseInt true

getProperty int maxscroll random unescape
Chapter 266

To call a function in Normal Mode:

Use the evaluate action. Enter the function name and any required arguments in
the Expression field.

Use the evaluate action to call a function in Normal Mode

To call a function on another Timeline use a target path. For example, to call the
function calculateTax that was declared in the instance functionsMovieClip,
use the following path:

_root.functionsMovieClip.calculateTax(total);

Note: Pass any arguments inside the parentheses.

For more information on each function, including deprecated string functions, see
individual entries in Chapter 7, “ActionScript Dictionary.”

Creating custom functions
You can define functions to execute a series of statements on passed values. Your
functions can also return values. Once a function is defined, it can be called from
any Timeline, including the Timeline of a loaded movie.
Writing Scripts with ActionScript 67

A function can be thought of as a “black box”: when a function is called, it is
provided with input (arguments). It performs some operation and then generates
output (a return value). A well-written function has carefully placed comments
about its input, output, and purpose. This way, a user of the function does not
need to understand exactly how the function works.

Defining a function

Functions, like variables, are attached to the movie clip that defines them. When a
function is redefined, the new definition replaces the old definition.

To define a function, use the function action followed by the name of the
function, any arguments to be passed to the function, and the ActionScript
statements that indicate what the function does.

The following is a function named Circle with the argument radius:

function Circle(radius) {
this.radius = radius;
this.area = Math.PI * radius * radius;

}

Note: The keyword this, used in a function body, is a reference to the movie clip that the
function belongs to.

You can also define a function by creating a function literal. A function literal is an
unnamed function that is declared in an expression instead of in a statement. You
can use a function literal to define a function, return its value, and assign it to a
variable in one expression, as in the following:

area = (function () {return Math.PI * radius *radius;})(5);

Passing arguments to a function

Arguments are the elements on which a function executes its code. (In this book,
the terms argument and parameter are interchangeable.) For example, the
following function takes the arguments initials and finalScore:

function fillOutScorecard(initials, finalScore) {
scorecard.display = initials;
scorecard.score = finalScore;

}

When the function is called, the required arguments must be passed to the
function. The function substitutes the passed values for the arguments in the
function definition. In this example, scorecard is the instance name of a movie
clip; display and score are editable text fields in the instance. The following
function call assigns the variable display the value "JEB" and the variable score
the value 45000:

fillOutScorecard("JEB", 45000);
Chapter 268

The argument initials in the function fillOutScorecard is similar to a local
variable; it exists while the function is called and ceases to exist when the function
exits. If you omit arguments during a function call, the omitted arguments are
passed as undefined. If you provide extra arguments in a function call that are
not required by the function declaration, they are ignored.

Using local variables in a function

Local variables are valuable tools for organizing code and making it easier to
understand. When a function uses local variables, it can hide its variables from all
other scripts in the movie; local variables are scoped to the body of the function
and are destroyed when the function exits. Any arguments passed to a function are
also treated as local variables.

Note: If you modify global variables in a function, use script comments to document these
modifications.

Returning values from a function

You can use the return action to return values from functions. The return action
stops the function and replaces it with the value of the return action. If Flash
doesn’t encounter a return action before the end of a function, an empty string is
returned. For example, the following function returns the square of the argument
x:

function sqr(x) {
return x * x;

}

Some functions perform a series of tasks without returning a value. For example,
the following function initializes a series of global variables:

function initialize() {
boat_x = _root.boat._x;
boat_y = _root.boat._y;
car_x = _root.car._x;
car_y = _root.car._y;

}

Calling a function

To invoke a function using the Actions panel in Normal Mode, you use the
evaluate action. Pass the required arguments inside parentheses. You can call a
function in any Timeline from any Timeline, including a loaded movie. For
example, the following statement invokes the function sqr in movie clip MathLib
on the main Timeline, passes it the argument 3, and stores the result in the
variable temp:

var temp = _root.MathLib.sqr(3);
Writing Scripts with ActionScript 69

In Flash 4, to simulate calling a function you could write a script on a frame after
the end of the movie and invoke it by passing the name of the frame label to the
call action. For example, if a script that initialized variables was on a frame
labeled initialize, you would call it as follows:

call("initialize");

This kind of script was not a true function because it could not accept arguments
and it could not return a value. Although the call action still functions in Flash
5, its use is not recommended.

Using predefined objects
You can use Flash’s predefined objects to access certain kinds of information. Most
predefined objects have methods (functions assigned to an object) that you can call
to return a value or perform an action. For example, the Date object returns
information from the system clock and the Sound object allows you to control
sound elements in your movie.

Some predefined objects have properties whose values you can read. For example,
the Key object has constant values that represent keys on the keyboard. Each
object has its own characteristics and abilities that can be used in your movie.

The following are Flash’s predefined objects:

• Array

• Boolean

• Color

• Date

• Key

• Math

• MovieClip

• Number

• Object

• Selection

• Sound

• String

• XML

• XMLSocket
Chapter 270

Movie clip instances are represented as objects in ActionScript. You can call
predefined movie clip methods just as you would call the methods of any other
ActionScript object.

For detailed information on each object, see its entry in Chapter 7, “ActionScript
Dictionary.”

Creating an object

There are two ways to create an object: the new operator and the object initializer
operator ({}). You can use the new operator to create an object from a predefined
object class, or from a custom defined object class. You can use the object
initializer operator ({})to create an object of generic type Object.

To use the new operator to create an object, you need to use it with a constructor
function. (A constructor function is simply a function whose sole purpose is to
create a certain type of object.) ActionScript’s predefined objects are essentially
prewritten constructor functions. The new object instantiates, or creates, a copy of
the object and assigns it all the properties and methods of that object. This is
similar to dragging a movie clip from the Library to the Stage in a movie. For
example, the following statements instantiate a Date object:

currentDate = new Date();

You can access the methods of some predefined objects without instantiating
them. For example, the following statement calls the Math object method
random:

Math.random();

Each object that requires a constructor function has a corresponding element in
the Actions panel toolbox; for example, new Color, new Date, new String, and
so on.

To create an object with the new operator in Normal Mode:

1 Choose setVariable

2 Enter a variable a name in the Name field.

3 Enter new Object, new Color, and so on in the Value field. Enter any
arguments required by the constructor function in parentheses.

4 Check the Expression box of the Value field.

If you don’t check the Expression box, the entire value will be a string literal.

In the following code, the object c is created from the constructor Color:

c = new Color(this);

Note: An object name is a variable with the object data type assigned to it.
Writing Scripts with ActionScript 71

To access a method in Normal Mode:

1 Select the evaluate action.

2 Enter the name of the object in the Expression field.

3 Enter a property of the object in the Expression field.

To use the object initializer operator ({}) in Normal Mode:

1 Select the setVariable action.

2 Enter name in the Variable field; this is the name of the new object.

3 Enter the property name and value pairs separated by a colon inside the object
initializer operator ({}).

For example, in this statement the property names are radius and area and their
values are 5 and the value of an expression:

myCircle = {radius: 5, area:(pi * radius * radius)};

The parentheses cause the expression to evaluate. The returned value is the value
of the variable area.

You can also nest array and object initializers, as in this statement:

newObject = {name: "John Smith", projects: ["Flash",
"Dreamweaver"]};

For detailed information on each object, see its entry in Chapter 7, “ActionScript
Dictionary.”

Accessing object properties

Use the dot (.) operator to access the value of properties in an object. The name of
the object goes on the left side of the dot, and the name of the property goes on
the right side. For example, in the following statement, myObject is the object
and name is the property:

myObject.name

To assign a value to a property in Normal Mode, use the setVariable action:

myObject.name = “Allen”

To change the value of a property, assign a new value as shown here:

myObject.name = "Homer";

You can also use the array access operator ([]) to access the properties of an object.
See Dot and array access operators.
Chapter 272

Calling object methods

You can call an object’s method by using the dot operator followed by the method.
For example, the following example calls the setVolume method of the Sound
object:

s = new Sound(this);
s.setVolume(50);

To call the method of a predefined object in Normal Mode, use the evaluate
action.

Using the MovieClip object

You can use the methods of the predefined MovieClip object to control movie clip
symbol instances on the Stage. The following example tells the instance
dateCounter to play:

dateCounter.play();

For detailed information on the MovieClip object, see its entry in Chapter 7,
“ActionScript Dictionary.”

Using the Array object

The Array object is a commonly used predefined ActionScript object that stores its
data in numbered properties instead of named properties. An array element’s
name is called an index. This is useful for storing and retrieving certain types of
information such as lists of students or a sequence of moves in a game.

You can assign elements of the Array object just as you would the property of any
object:

move[1] = "a2a4";
move[2] = "h7h5";
move[3] = "b1c3";
...
move[100] = "e3e4";

To access the second element of the array, use the expression move[2].

The Array object has a predefined length property that is the value of the number
of elements in the array. When an element of the Array object is assigned and the
element’s index is a positive integer such that index >= length, length is
automatically updated to index + 1.
Writing Scripts with ActionScript 73

Using custom objects
You can create custom objects to organize information in your scripts for easier
storage and access by defining an object’s properties and methods. After you create
a master object or “class,” you can use or “instantiate” copies (that is, instances) of
that object in a movie. This allows you to reuse code and conserve file size.

An object is a complex data type containing zero or more properties. Each
property, like a variable, has a name and a value. Properties are attached to the
object and contain values that can be changed and retrieved. These values can be
of any data type: string, number, Boolean, object, movie clip, or undefined. The
following properties are of various data types:

customer.name = "Jane Doe"
customer.age = 30
customer.member = true
customer.account.currentRecord = 000609
customer.mcInstanceName._visible = true

The property of an object can also be an object. In line 4 of the previous example,
account is a property of the object customer and currentRecord is a property
of the object account. The data type of the currentRecord property is number.

Creating an object

You can use the new operator to create an object from a constructor function. A
constructor function is always given the same name as the type of object it is
creating. For example, a constructor that creates an account object would be called
Account. The following statement creates a new object from the function called
MyConstructorFunction:

new MyConstructorFunction (argument1, argument2, ... argumentN);

When MyConstructorFunction is called, Flash passes it the hidden argument
this, which is a reference to the object that the MyConstructorFunction is
creating. When you define a constructor, this allows you to refer to the objects
that the constructor will create. For example, the following is a constructor
function that creates a circle:

function Circle(radius) {
 this.radius = radius;
 this.area = Math.PI * radius * radius;
}

Constructor functions are commonly used to fill in the methods of an object.

function Area() {
this.circleArea = MAth.PI * radius * radius;

}

Chapter 274

To use an object in a script, you must assign it to a variable. To create a new circle
object with the radius 5, use the new operator to create the object and assign it to
the local variable myCircle:

var myCircle = new Circle(5);

Note: Objects have the same scope as the variable to which they are assigned. See
Scoping a variable.

Creating inheritance

All functions have a prototype property that is created automatically when the
function is defined. When you use a constructor function to create a new object,
all the properties and methods of the constructor’s prototype property become
proerties and methods of the __proto__ property of the new object. The
prototype property indicates the default property values for objects created with
that function. Passing values using the __proto__ and prototype properties is
called inheritance.

Inheritance proceeds according to a definite hierarchy. When you call an object’s
property or method, ActionScript looks at the object to see if such an element
exists. If it doesn’t exist, ActionScript looks at the object’s __proto__ property for
the information (object.__proto__). If the called property is not a property of
the object’s __proto__ object, ActionScript looks at
object.__proto__.__proto__.

It’s common practice to attach methods to an object by assigning them to the
object’s prototype property. The following steps describe how to define a sample
method:

1 Define the constructor function Circle, as follows:

 function Circle(radius) {
 this.radius = radius
 }

2 Define the area method of the Circle object. The area method will calculate
the area of the circle. You can use a function literal to define the area method
and set the area property of the circle’s prototype object, as follows:

Circle.prototype.area = function () {
 return Math.PI * this.radius * this.radius
 }

3 Create an instance of the Circle object, as follows:

var myCircle = new Circle(4);
Writing Scripts with ActionScript 75

4 Call the area method of the new myCircle object, as follows:

var myCircleArea = myCircle.area()

ActionScript searches the myCircle object for the area method. Since the
object doesn’t have an area method, its prototype object Circle.prototype
is searched for the area method. ActionScript finds it and calls it.

You can also attach a method to an object by attaching the method to every
individual instance of the object, as in this example:

 function Circle(radius) {
 this.radius = radius
 this.area = function() {
 return Math.PI * this.radius * this.radius
 }
 }

This technique is not recommended. Using the prototype object is more
efficient, because only one definition of area is necessary, and that definition is
automatically copied into all instances created by the Circle function.

The prototype property is supported by Flash Player version 5 and later. For
more information, see Chapter 7, “ActionScript Dictionary.”

Opening Flash 4 files
ActionScript has changed considerably with the release of Flash 5. It is now an
object-oriented language with multiple data types and dot syntax. Flash 4
ActionScript only had one true data type: string. It used different types of
operators in expressions to indicate whether the value should be treated as a string
or as a number. In Flash 5, you can use one set of operators on all data types.

When you use Flash 5 to open a file that was created in Flash 4, Flash
automatically converts ActionScript expressions to make them compatible with
the new Flash 5 syntax. You’ll see the following data type and operator conversions
in your ActionScript code:

• The = operator in Flash 4 was used for numeric equality. In Flash 5, == is the
equality operator and = is the assignment operator. Any = operators in Flash 4
files are automatically converted to ==.

• Flash automatically performstype conversions to ensure that operators behave
as expected. Because of the introduction of multiple data types, the following
operators have new meanings:

+, ==, !=, <>, <, >, >=, <=
Chapter 276

• In Flash 4 ActionScript, these operators were always numeric operators. In
Flash 5, they behave differently depending on the data types of the operands.
To prevent any semantic differences in imported files, the Number function is
inserted around all operands to these operators. (Constant numbers are already
obviously numbers, so they are not enclosed in Number).

• In Flash 4, the escape sequence \n generated a carriage return character (ASCII
13). In Flash 5, to comply with the ECMA-262 standard, \n generates a line-
feed character (ASCII 10). An \n sequence in Flash 4 FLA files is automatically
converted to \r.

• The & operator in Flash 4 was used for string addition. In Flash 5, & is the
bitwise AND operator. The string addition operator is now called add. Any &
operators in Flash 4 files are automatically converted to add operators.

• Many functions in Flash 4 did not require closing parentheses, for example,
Get Timer , Set Variable, Stop, and Play. To create consistent syntax, the
Flash 5 getTimer function and all actions now require closing parentheses.
These parentheses are automatically added during the conversion.

• When the getProperty function is executed on a movie clip that doesn’t exist,
it returns the value undefined, not 0, in Flash 5. And undefined == 0 is
false in Flash 5 ActionScript. Flash fixes this problem when converting Flash
4 files by introducing Number functions in equality comparisons. In the
following example, Number forces undefined to be converted to 0 so the
comparison will succeed:

getProperty("clip", _width) == 0
Number(getProperty("clip", _width)) == Number(0)

Note: If you used any Flash 5 keywords as variable names in your Flash 4 ActionScript, the
syntax will return an error in Flash 5. To fix this, rename your variables in all locations. See
Keywords.

Using Flash 5 to create Flash 4 content
If you are using Flash 5 to create content for the Flash 4 Player (by exporting as
Flash 4), you won’t be able to take advantage of all the new features present in
Flash 5 ActionScript. However, many new ActionScript features are still available.
Flash 4 ActionScript has only one basic primitive data type which is used for both
numeric and string manipulation. When you author a movie for the Flash 4
Player, you need to use the deprecated string operators located in the String
Operators category in the toolbox.

You can use the following Flash 5 features when you export to the Flash 4 SWF
file format:

• The array and object access operator ([]).

• The dot operator (.).
Writing Scripts with ActionScript 77

• Logical operators, assignment operators, and pre-increment and post-
increment/decrement operators.

• The modulo operator(%), all methods and properties of the Math object.

These operators and functions are not supported natively by the Flash 4 Player.
Flash 5 must export them as series approximations. This means that the results
are only approximate. In addition, due to the inclusion of series
approximations in the SWF file, these functions take up more room in Flash 4
SWF files than they do in Flash 5 SWF files.

• The for, while, do while, break, and continue actions.

• The print and printAsBitmap actions.

The following Flash 5 features can’t be used in movies exported to the Flash 4
SWF file format:

• Custom functions

• XML support

• Local variables

• Predefined objects (except Math)

• Movie clip actions

• Multiple data types

• eval with dot syntax (for example, eval(“_root.movieclip.variable”))

• return

• new

• delete

• typeof

• for..in

• keycode

• targetPath

• escape

• globalToLocal and localToGlobal

• hitTest

• isFinite and inNaN

• parseFloat and parseInt

• tunescape

• _xmouse and _ymouse
Chapter 278

• _quality
Writing Scripts with ActionScript 79

Chapter 280

3

CHAPTER 3

. .. .
Creating Interaction with ActionScript

An interactive movie involves your audience. Using the keyboard, the mouse, or
both, your audience can jump to different parts of movies, move objects, enter
information, click buttons, and perform many other interactive operations.

You create interactive movies by setting up scripts that run when specific events
occur. Events that can trigger a script occur when the playhead reaches a frame,
when a movie clip loads or unloads, or when the user clicks a button or presses
keys on the keyboard. You use ActionScript to create scripts that tell Flash what
action to perform when the event occurs. The following basic actions are common
ways to control navigation and user interaction in a movie:

� Playing and stopping movies

� Adjusting a movie’s display quality

� Stopping all sounds

� Jumping to a frame or scene

� Jumping to a different URL

� Checking whether a frame is loaded

� Loading and unloading additional movies

For detailed information on these actions, see Using Flash.
81

To create more complex interactivity, you need to understand the following
techniques:

� Creating a custom cursor

� Getting the mouse position

� Capturing keypresses

� Creating a scrolling text field

� Setting color values

� Creating sound controls

� Detecting collisions

Creating a custom cursor
To hide the standard cursor (that is, the onscreen representation of the mouse
pointer), you use the hide method of the predefined Mouse object. To use a movie
clip as the custom cursor, you use the startDrag action.

Actions attached to a movie clip to create a custom cursor
Chapter 382

To create a custom cursor:

1 Create a movie clip to use as a custom cursor.

2 Select the movie clip instance on the Stage.

3 Choose Window > Actions to open the Object Actions panel.

4 In the Toolbox list, select Objects, then select Mouse, and drag hide to the
Script window.

The code should look like this:

onClipEvent(load){
Mouse.hide();

}

5 In the Toolbox list, select Actions; then drag startDrag to the Script window.

6 Select the Lock Mouse to Center box.

The code should look like this:

onClipEvent(load){
Mouse.hide()
startDrag(this, true);

}

7 Choose Control > Test Movie to use the custom cursor.

Buttons will still function when you use a custom cursor. It’s a good idea to put
the custom cursor on the top layer of the Timeline so that it moves in front of
buttons and other objects as you move the mouse in the movie.

For more information about the methods of the Mouse object, see their entries in
Chapter 7, “ActionScript Dictionary.”
Creating Interaction with ActionScript 83

Getting the mouse position
You can use the _xmouse and _ymouse properties to find the location of the mouse
pointer (cursor) in a movie. Each Timeline has an _xmouse and _ymouse property
that returns the location of the mouse within its coordinate system.

The _xmouse and _ymouse properties within the main Timeline and a movie
clip Timeline.

The following statement could be placed on any Timeline in the _level0 movie to
return the _xmouse position within the main Timeline:

x_pos = _root._xmouse;

To determine the mouse position within a movie clip, you can use the movie clip’s
instance name. For example, the following statement could be placed on any
Timeline in the _level0 movie to return the _ymouse position in the myMovieClip
instance:

y_pos = _root.myMovieClip._ymouse

You can also determine the mouse position within a movie clip by using the
_xmouse and _ymouse properties in a clip action, as in the following:

onClipEvent(enterFrame){
xmousePosition = _xmouse;
ymousePosition = _ymouse;

}

Chapter 384

The variables x_pos and y_pos are used as containers to hold the values of the
mouse positions. You could use these variables in any script in your movie. In the
following example, the values of x_pos and y_pos update every time the user moves
the mouse.

onClipEvent(mouseMove){
x_pos = _root._xmouse;
y_pos = _root._ymouse;

}

For more information about the _xmouse and _ymouse properties, see their entries
in Chapter 7, “ActionScript Dictionary.”

Capturing keypresses
You can use the methods of the predefined Key object to detect the last key the
user pressed. The Key object does not require a constructor function; to use its
methods, you simply call the object itself, as in the following example:

Key.getCode();

You can obtain either virtual key codes or ASCII values of keypresses:

� To obtain the virtual key code of the last key pressed, use the getCode method.

� To obtain the ASCII value of the last key pressed, use the getAscii method.

A virtual key code is assigned to every physical key on a keyboard. For example,
the left arrow key has the virtual key code 37. By using a virtual key code, you can
ensure that your movie’s controls are the same on every keyboard regardless of
language or platform.
Creating Interaction with ActionScript 85

ASCII (American Standard Code for Information Interchange) values are assigned
to the first 127 characters in every character set. ASCII values provide information
about a character on the screen. For example, the letter “A” and the letter “a” have
different ASCII values. A common place for using Key.getCode is in an onClipEvent
handler. By passing keyDown as the parameter, the handler instructs ActionScript
to check for the value of the last key pressed only when a key is actually pressed.
This example uses Key.getCode in an if statement to create navigation controls for
the spaceship.
Chapter 386

To create keyboard controls for a movie:

1 Decide which keys to use and determine their virtual key codes by using one of
these approaches:

� See the list of key codes in Appendix B, “Keyboard Keys and Key Code
Values.”Use a Key object constant. (In the Toolbox list, select Objects, then
select Key. Constants are listed in all capital letters.)

� Assign the following clip action, then choose Control > Test Movie and press
the desired key:

onClipEvent(keyDown) {
trace(Key.getCode());

}

2 Select a movie clip on the Stage.

3 Choose Window > Actions.

4 Double-click the onClipEvent action in the Actions category of the toolbox.

5 Choose the Key down event in the parameters pane.

6 Double-click the if action in the Actions category of the toolbox.

7 Click in the Condition parameter, select Objects; then select Key and getCode.

8 Double-click the equality operator (==) in the Operators category of
the toolbox.

9 Enter the virtual key code to the right of the equality operator.

Your code should look like this:

onClipEvent(keyDown) {
if (Key.getCode() == 32) {
}

}

10 Select an action to perform if the correct key is pressed.

For example, the following action causes the main Timeline to go to the next
frame when the Spacebar (32) is pressed:

onClipEvent(keyDown) {
if (Key.getCode() == 32) {

nextFrame();
}

}

For more information about the methods of the Key object, see their entries in
Chapter 7, “ActionScript Dictionary.”
Creating Interaction with ActionScript 87

Creating a scrolling text field
You can use the scroll and maxscroll properties to create a scrolling text field.

In the Text Options panel, you can assign a variable to any text field set to Input
Text or Dynamic Text. The text field acts like a window that displays the value of
that variable.

Each variable associated with an text field has a scroll and a maxscroll property. You
can use these properties to scroll text in a text field. The scroll property returns the
number of the topmost visible line in a text field; you can set and retrieve it. The
maxscroll property returns the topmost visible line in a text field when the bottom
line of text is visible; you can read, but not set, this property.

For example, suppose you have a text field that is four lines long. If it contains the
variable speech, that would fill nine lines of the text field, only part of the speech
variable can be displayed at one time (identified by the solid box):

You can access these properties using dot syntax, as in the following:

textFieldVariable.scroll
myMovieClip.textFieldVariable.scroll
textFieldVariable.maxscroll
myMovieClip.textFieldVariable.maxscroll

scroll property

maxscroll property

Visible text field
Chapter 388

To create a scrolling text field:

1 Drag a text field on the Stage.

2 Choose Window > Panels > Text Options.

3 Choose Input Text from the pop-up menu.

4 Enter the variable name text in the Variable field.

5 Drag the text field’s bottom right corner to resize the text field.

6 Choose Window > Actions.

7 Select frame 1 in the main Timeline and assign a set variable action that sets the
value of text.

No text will appear in the field until the variable is set. Therefore, although you
can assign this action to a any frame, button, or movie clip, it’s a good idea to
assign the action to frame 1 on the main Timeline, as shown here:

8 Choose Window > Common Libraries > Buttons and drag a button to
the Stage.

9 Press Alt (Windows) or Option (Macintosh) and drag the button to create
a copy.

10 Select the top button and choose Window > Actions.

11 Drag the set variables action from the toolbox to the Script window in the
Actions panel.

12 Enter text.scroll in the Variable box.

13 Enter text.scroll -1 in the Value box and select the Expression check box.
Creating Interaction with ActionScript 89

14 Select the down arrow button and assign the following set variables action:

15 text.scroll = text.scroll+1;Choose Control > Test Movie to test the scrolling
text field.

For more information about the scroll and maxscroll properties, see their entries in
Chapter 7, “ActionScript Dictionary.”

Setting color values
You can use the methods of the predefined Color object to adjust the color of a
movie clip. The setRGB method assigns hexadecimal RGB (red, green, blue) values
to the object, and the setTransform method sets the percentage and offset values for
the red, green, blue, and transparency (alpha) components of a color. The
following example uses setRGB to change an object’s color based on user input.

The button action creates a color object and changes the color of the shirt based on
user input.

To use the Color object, you need to create an instance of the object and apply it
to a movie clip.

To set the color value of a movie clip:

1 Select a movie clip on the Stage, and choose Window > Panels > Instance.

2 Enter the instance name colorTarget in the Name box.

3 Drag a text field on the Stage.
Chapter 390

4 Choose Window > Panels > Text Options and assign it the variable name input.

5 Drag a button to the Stage and select it.

6 Choose Window > Actions.

7 Drag the set variable action from the toolbox to the Script window.

8 In the Variable box, enter c.

9 In the toolbox, select Objects, then Color, and drag new Color to the Value box.

10 Select the Expression check box.

11 Click the Target Path button and select colorTarget. Click OK.

The code in the Script window should look like this:

on(release) {
c = new Color(colorTarget);

}

12 Drag the evaluate action from the toolbox to the Script window.

13 Enter c in the Expression box.

14 In the Objects category of the Toolbox list, select Color; then drag setRGB to the
Expression box.

15 Select Functions and drag parseInt to the Expression box.

The code should look like this:

on(release) {
c = new Color(colorTarget);
c.setRGB(parseInt(string, radix));

}

16 For the parseInt string argument, enter input.

The string to be parsed is the value entered into the editable text field.

17 For the parseInt radix argument, enter 16.

The radix is the base of the number system to be parsed. In this case, 16 is the
base of the hexadecimal system that the Color object uses. The code should
look like this:

on(release) {
c = new Color(colorTarget);
c.setRGB(parseInt(input, 16));

}

18 Choose Control > Test Movie to change the color of the movie clip.

For more information about the methods of the Color object, see their entries in
Chapter 7, “ActionScript Dictionary.”
Creating Interaction with ActionScript 91

Creating sound controls
To control sounds in a movie, you use the predefined Sound object. To use the
methods of the Sound object, you must first create a new Sound object. Then you
can use the attachSound method to insert a sound from the library into a movie
while the movie is running.

The Sound object’s setVolume method controls the volume and the setPan method
adjusts the left and right balance of a sound. The following example uses setVolume
and setPan to create volume and balance controls that the user can adjust.

When the user drags the volume slider, the setVolume method is called.
Chapter 392

To attach a sound to a Timeline:

1 Choose File > Import to import a sound.

2 Select the sound in the library and choose Linkage from the Options menu.

3 Select Export This Symbol and give it the identifier mySound.

4 Select frame 1 in the main Timeline and choose Window > Actions.

5 Drag the set variable action from the toolbox to the Script window.

6 Enter s in the Value box.

7 In the Toolbox list, select Objects, then select Sound, and drag new Sound to the
Value box.

The code should look like this:

s = new Sound();

8 Double-click the evaluate action in the toolbox.

9 Enter s in the Expression box.

10 In the Objects category of the Toolbox list, select Sound, then drag attachSound
to the Expression box.

11 Enter “mySound” in the ID argument of attachSound.

12 Double-click the evaluate action in the toolbox.

13 Enter s in the Expression box.

14 In the Objects category, select Sound, then drag start to the Expression box.

The code should look like this:

s = new Sound();

s.attachSound("mySound");
s.start();

15 Choose Control > Test Movie to hear the sound.
Creating Interaction with ActionScript 93

To create a sliding volume control:

1 Drag a button to the Stage.

2 Select the button and choose Insert > Convert to Symbol. Choose the movie
clip behavior.

This creates a movie clip with the button on it’s first frame.

3 Select the movie clip and choose Edit > Edit Symbol.

4 Select the button and choose Window > Actions.

5 Enter the following actions:

on (press) {
 startDrag ("", false, left, top, right, bottom);
 dragging = true;
}
on (release, releaseOutside) {
 stopDrag ();
 dragging = false;
}

The startDrag parameters left, top, right, and bottom are variables set in a
clip action.

6 Choose Edit > Edit Movie to return to the main Timeline.

7 Select the movie clip on the Stage.

8 Enter the following actions:

onClipEvent (load) {
top=_y;
left=_x;
right=_x;
bottom=_y+100;

}

onClipEvent(enterFrame){
if (dragging==true){

_root.s.setVolume(100-(_y-top));
}

}

9 Choose Control > Test Movie to use the volume slider.
Chapter 394

To create a balance sliding control:

1 Drag a button to the Stage.

2 Select the button and choose Insert > Convert to Symbol. Choose the movie
clip property.

3 Select the movie clip and choose Edit > Edit Symbol.

4 Select the button and choose Window > Actions.

5 Enter the following actions:

on (press) {
 startDrag ("", false, left, top, right, bottom);
 dragging = true;
}
on (release, releaseOutside) {
 stopDrag ();
 dragging = false;
}

The startDrag parameters left, top, right, and bottom are variables set in a
clip action.

6 Choose Edit > Edit Movie to return to the main Timeline.

7 Select the movie clip on the Stage.

8 Enter the following actions:

onClipEvent(load){
top=_y;
bottom=_y;
left=_x-50;
right=_x+50;
center=_x;

}

onClipEvent(enterFrame){
if (dragging==true){

_root.s.setPan((_x-center)*2);
}

}

9 Choose Control > Test Movie to use the balance slider.

For more information about the methods of the Sound object, see their entries in
Chapter 7, “ActionScript Dictionary.”
Creating Interaction with ActionScript 95

Detecting collisions
You can use the hitTest method of the MovieClip object to detect collisions in a
movie. The hitTest method checks to see if an object has collided with a movie clip
and returns a Boolean value (true or false). You can use the parameters of the hitTest
method to specify the x and y coordinates of a hit area on the Stage, or use the
target path of another movie clip as a hit area.

Each movie clip in a movie is an instance of the MovieClip object. This allows you
to call methods of the object from any instance, as in the following:

myMovieClip.hitTest(target);

You can use the hitTest method to test the collision of a movie clip and a
single point.

The results of the hitTest are returned in the text field.

You can also use the hitTest method to test a collision between two movie clips.

The results of the hitTest are returned in the text field.
Chapter 396

To perform collision detection between a movie clip and a point on the Stage:

1 Select a movie clip on the Stage.

2 Choose Window > Actions to open the Object Actions panel.

3 Double-click trace in the Actions category in the toolbox.

4 Select the Expression check box and enter the following in the Expression box:

trace (this.hitTest(_root._xmouse, _root._ymouse, true);

This example uses the _xmouse and _ymouse properties as the x and y
coordinates for the hit area and sends the results to the Output window in test-
movie mode. You can also set a text field on the Stage to display the results or
use the results in an if statement.

5 Choose Control > Test Movie and move the mouse over the movie clip to test
the collision.

To perform collision detection on two movie clips:

1 Drag two movie clips to the Stage and give them the instance names
mcHitArea and mcDrag.

2 Create a text field on the Stage and enter status in the Text Options
Variable box.

3 Select mcHitArea and choose Window > Actions.

4 Double-click evaluate in the toolbox.

5 Enter the following code in the Expression box by selecting items from
the toolbox:

_root.status=this.hitTest(_root.mcDrag);

6 Select the onClipEvent action in the Script window and choose enterFrame as
the event.

7 Select mcDrag and choose Window > Actions.

8 Double-click startDrag in the toolbox.

9 Select the Lock Mouse to Center check box.

10 Select the onClipEvent action in the Script window and choose the Mouse
down event.

11 Double-click stopDrag in the toolbox.

12 Select the onClipEvent action in the Script window and choose the Mouse
up event.

13 Choose Control > Test Movie and drag the movie clip to test the
collision detection.

For more information about the hitTest method, see its entry in Chapter 7,
“ActionScript Dictionary.”
Creating Interaction with ActionScript 97

Chapter 398

4

CHAPTER 4

. .. .
Integrating Flash with Web Applications

Flash movies can send information to and load information from remote files. To
send and load variables, you use the loadVariables or getURL action. To load a
Flash Player movie from a remote location, you use the loadMovie action. To
send and load XML data, you use the XML or XMLSocket object. You can
structure XML data using the predefined XML object methods.

You can also create Flash forms consisting of common interface elements such as
text fields and pop-up menus to collect data that will be sent to a server-side
application.

To extend Flash so that it can send and receive messages from the movie’s host
environment—for example, the Flash Player or a JavaScript function in a Web
browser—you can use fscommand and Flash Player methods.

Sending and loading variables to and from a
remote file
A Flash movie is a window for capturing and displaying information, much like
an HTML page. Flash movies, unlike HTML pages, can stay loaded in the
browser and continuously update with new information without having to
refresh. You can use Flash actions and object methods to send information to and
receive information from server-side scripts, text files, and XML files.

Server-side scripts can request specific information from a database and relay it
back and forth between the database and a Flash movie. Server-side scripts can be
written in many different languages: some of the most common are Perl, ASP
(Microsoft Active Server Pages), and PHP.
99

Storing information in a database and retrieving it allows you to create dynamic
and personalized content for your movie. For example, you could create a message
board, personal profiles for users, or a shopping cart that remembers what a user
has purchased so that it can determine the user’s preferences.

You can use several ActionScript actions and object methods to pass information
into and out of a movie. Each action and method uses a protocol to transfer
information. Each also requires information to be formatted in a certain way.

The following actions use HTTP or HTTPS protocol to send information in
URL encoded format: getURL, loadVariables, loadMovie.

The following methods use HTTP or HTTPS protocol to send information as
XML: XML.send, XML.load, XML.sendAndLoad.

The following methods create and use a TCP/IP socket connection to send
information as XML: XMLSocket.connect, XMLSocket.send.

About security

When playing a Flash movie in a Web browser, you can load data into the movie
only from a file that is on a server in the same subdomain. This prevents Flash
movies from being able to download information from other people’s servers. To
determine the subdomain of a URL consisting of one or two components, use the
entire domain:

To determine the subdomain of a URL consisting of more than two components,
remove the last level:

Domain Subdomain

http://macromedia macromedia

http://macromedia.com macromedia.com

Domain Subdomain

http://x.y.macromedia.com y.macromedia.com

http://www.macromedia.com macromedia.com
Chapter 4100

The following chart shows how the Flash Player determines whether or not to
permit an HTTP request:

When you use the XMLSocket object to create a socket connection with a server,
you must use a port numbered 1024 or higher. (Ports with lower numbers are
commonly used for Telnet, FTP, the World Wide Web, or Finger.)

Flash relies on standard browser and HTTP and HTTPS security features.
Essentially, Flash offers the same security that is available with standard HTML.
You should follow the same rules that you follow when building secure HTML
Web sites. For example, to support secure passwords in Flash, you need to
establish your password authentication with a request to a Web server.

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Is this request for:
loadVariables,
xml.load,
xml.sendAndLoad,
or
xmlsocket.connect?

Is the request for
a relative URL?

Is the requesting
movie loaded from
a local disk?
(its URL begins with
file: or res:)

Does the URL being
requested start with
http://,
https:// or
ftp://?

Does the domain name
of the requesting movie
match the domain name
of the requested URL?

Request
Permitted

Request
Rejected

YES

NO

YES NO

YES

NO

YES

NO

YES

NO
Integrating Flash with Web Applications 101

To create a password, use a text field to request a password from the user. Submit
it to a sever in a loadVariables action or in an XML.sendAndLoad method using
an HTTPS URL with the POST method. The Web server can then verify whether
the password is valid. This way, the password will never be available in the
SWF file.

Checking for loaded data

Each action and method that loads data into a movie (except XMLSocket.send) is
asynchronous; the results of the action are returned at an indeterminate time.

Before you can use loaded data in a movie, you must check to see if it has been
loaded. For example, you can’t load variables and manipulate the values of those
variables in the same script. In the following script, you can’t use the variable
lastFrameVisited until you’re sure the variable has loaded from the file
myData.txt:

loadVariables("myData.txt", 0);
gotoAndPlay(lastFrameVisited);

Each action and method has a specific technique you can use to check data it has
loaded. If you use the loadVariables or loadMovie actions you can load
information into a movie clip target and use the data event of the onClipEvent
action to execute a script. If you use the loadVariables action to load the data,
the onClipEvent(data) action executes when the last variable is loaded. If you
use the loadMovie action to load the data, the onClipEvent(data) action
executes each time a fragment of the movie is streamed into the Flash Player.

For example, the following button action loads the variables from the file
myData.txt into the movie clip loadTargetMC:

on(release){
loadVariables(“myData.txt”, _root.loadTargetMC);

}

An action assigned to the loadTargetMC instance uses the variable
lastFrameVisited which is loaded from the file myData.txt. The following
action will execute only after all the variables, including lastFrameVisited,
are loaded:

onClipEvent(data) {
goToAndPlay(lastFrameVisited);

}

If you use the XML.load and XMLSocket.connect methods, you can define a
handler that will process the data when it arrives. A handler is a property of the
XML or XMLSocket object to which you assign a function that you have defined.
The handlers are called automatically when the information is received. For the
XML object, use XML.onLoad. For the XMLSocket object, use
XMLSocket.onConnect.
Chapter 4102

For more information, see “Using the XML object” on page 104 and “Using the
XMLSocket object” on page 108.

Using loadVariables, getURL, and loadMovie

The loadVariables, getURL, and loadMovie actions all communicate with
server-side scripts using the HTTP protocol. Each action sends all the variables
from the Timeline to which the action is attached; each action handles its response
as follows:

• getURL returns any information to a browser window, not into the
Flash Player.

• loadVariables loads variables into a specified Timeline in the Flash Player.

• loadMovie loads a movie into a specified level in the Flash Player.

When you use the loadVariables, getURL, or loadMovie actions, you can
specify several arguments:

• URL is the file in which the remote variables reside.

• Location is the level or target in the movie that receives the variables.

For more information about levels and targets, see <<xref>>

Note: The getURL action does not take this argument.

• Variables sets the HTTP method, either GET or POST, by which the variables
will be sent.

For example, if you wanted to track the high scores for a game you could store the
scores on a server and use a loadVariables action to load them into the movie
each time someone played the game. The action might look something like this:

loadVariables("http://www.mySite.com/scripts/high_score.php",
_root.scoreClip, GET)

This loads variables from the PHP script called high_score.php into the movie
clip instance scoreClip using the GET HTTP method.

Any variables loaded with the loadVariables action must be in the standard
MIME format application/x-www-urlformencoded (a standard format used by
CGI scripts). The file that you specify in the URL argument of the
loadVariables action must write out the variable and value pairs in this format
so that Flash can read them.

The file can specify any number of variables; variable and value pairs must be
separated with an ampersand (&) and words within a value must be separated with
a plus (+). For example, this phrase defines several variables:

highScore1=54000&playerName1=rockin+good&highScore2=53455&playerN
ame2=bonehelmet&highScore3=42885&playerName3=soda+pop
Integrating Flash with Web Applications 103

For more information on loadVariables, getURL, and loadMovie, see their
entries in Chapter 7, “ActionScript Dictionary.”About XML

XML (Extensible Markup Language) is becoming the standard for the interchange
of structured data in Internet applications. You can integrate data in Flash with
servers that use XML technology to build sophisticated applications such as a chat
system or a brokerage system.

In XML, as with HTML, you can use tags to markup, or specify, a body of text. In
HTML, you can use predefined tags to indicate how text should appear in a Web
browser (for example, the tag indicates that text should be bold). In XML,
you define tags that identify the type of a piece of data (for example,
<password>VerySecret</password>). XML separates the structure of the
information from the way it’s displayed. This allows the same XML document to
be used and reused in different environments.

Every XML tag is called a node, or an element. Each node has a type (1–XML
element, or 3–text node) and elements may also have attributes. A node nested in
a node is called a child or a childNode. This hierarchical tree structure of nodes is
called the XML DOM (Document Object Model)—much like the JavaScript
DOM, which is the structure of elements in a Web browser.

In the following example, <PORTFOLIO> is the parent node; it has no attributes
and contains the childNode <HOLDING> which has the attributes SYMBOL, QTY,
PRICE, and VALUE:

<PORTFOLIO>
 <HOLDING SYMBOL="RICH"
 QTY="75"
 PRICE="245.50"
 VALUE="18412.50" />
</PORTFOLIO>

Using the XML object

You can use the methods of the ActionScript XML object (for example,
appendChild, removeNode, and insertBefore) to structure XML data in Flash
to send to a server and to manipulate and interpret downloaded XML data.You
can use the following XML object methods to send and load XML data to a server
via the HTTP POST method:

• load downloads XML from a URL and places it in an ActionScript
XML object.

• send passes an XML object to a URL. Any returned information is sent to
another browser window.

• sendAndLoad sends an XML object to a URL. Any returned information is
placed in an ActionScript XML object.
Chapter 4104

For example, you could create a brokerage system for trading securities that stores
all its information (user names, passwords, session IDs, portfolio holdings, and
transaction information) in a database.

The server-side script that passes information between Flash and the database
reads and writes the data in XML format. You can use ActionScript to convert
information collected in the Flash movie (for example, a username and password)
to an XML object and then send the data to the server-side script as an XML
document. You can also use ActionScript to load the XML document that the
server returns into an XML object to be used in the movie.

The flow and conversion of data between a Flash Player movie, a server-side scripting
document, and a database.

The password validation for the brokerage system requires two scripts: a function
defined on frame one, and a script that creates and sends the XML objects
attached to the SUBMIT button in the form.

When a user enters their information into text fields in the Flash movie with the
variables username and password, the variables must be converted to XML
before you pass them to the server. The first section of the script loads the variables
into a newly created XML object called loginXML. When a user presses the
SUBMIT button, the loginXML object is converted to a string of XML and sent
to the server.

PostScript error (invalidfont, findfon
Integrating Flash with Web Applications 105

The following script is attached to the SUBMIT button. To understand the script,
read the commented lines of each script as indicated by the characters //:

on (release) {
 // A. Construct a XML document with a LOGIN element
 loginXML = new XML();
 loginElement = loginXML.createElement("LOGIN");
 loginElement.attributes.username = username;
 loginElement.attributes.password = password;
 loginXML.appendChild(loginElement);

 // B. Construct a XML object to hold the server's reply
 loginReplyXML = new XML();
 loginReplyXML.onLoad = onLoginReply;

 // C. Send the LOGIN element to the server,
 // place the reply in loginReplyXML
 loginXML.sendAndLoad("https://www.imexstocks.com/main.cgi",
 loginReplyXML);
}

The first section of the script generates the following XML when the user presses
the SUBMIT button:

<LOGIN USERNAME="JeanSmith" PASSWORD="VerySecret" />

The server receives the XML, generates an XML response, and sends it back to the
Flash movie. If the password is accepted, the server responds with the following:

<LOGINREPLY STATUS="OK" SESSION="rnr6f7vkj2oe14m7jkkycilb" />

This XML includes a SESSION attribute which contains a unique, randomly
generated session ID which will be used in all communications between the client
and server for the rest of the session. If the password is rejected, the server
responds with the following message:

<LOGINREPLY STATUS="FAILED" />

The LOGINREPLY XML node must load into a blank XML object in the Flash
movie. The following statement creates the XML object loginreplyXML to
receive the XML node:

// B. Construct an XML object to hold the server's reply
loginReplyXML = new XML();
loginReplyXML.onLoad = onLoginReply;

The second statement assigns the onLoginReply function to the
loginReplyXML.onLoad handler.
Chapter 4106

The LOGINREPLY XML element arrives asynchronously, much like the data from a
loadVariables action, and loads into the loginReplyXML object. When the data
arrives, the onLoad method of the loginReplyXML object is called. You must
define the onLoginReply function and assign it to the loginReplyXML.onLoad
handler so that it can process the LOGINREPLY element. The onLoginReply
function is assigned to the frame that contains the submit button.

The onLoginReply function is defined on the first frame of the movie.

The onLoginReply function is defined in the first frame of the movie. To
understand the script, read the commented lines of each script as indicated by the
characters //:

function onLoginReply() {
 // Get the first XML element
 var e = this.firstChild;
 // If the first XML element is a LOGINREPLY element with
 // status OK, go to the portfolio screen. Otherwise,
 // go to the login failure screen and let the user try again.
 if (e.nodeName == "LOGINREPLY" && e.attributes.status == "OK") {
// Save the session ID for future communications with server
 sessionID = e.attributes.session;
// Go to the portfolio viewing screen
 gotoAndStop("portfolioView");
 } else {
 // Login failed! Go to the login failure screen.
 gotoAndStop("loginFailed");
 }
}

Integrating Flash with Web Applications 107

The first line of this function, var e = this.firstChild, uses the keyword
this to refer to the XML object loginReplyXML that has just been loaded with
XML from the server. You can use this because onLoginReply has been invoked
as loginReplyXML.onLoad, so even though onLoginReply appears to be a plain
function, it actually behaves as a method of loginReplyXML.

To send the username and password as XML to the server and to load an XML
response back into the Flash movie, you can use the sendAndLoad method, as in
the following:

// C. Send the LOGIN element to the server,
// place the reply in loginReplyXML
 loginXML.sendAndLoad("https://www.imexstocks.com/main.cgi",
loginReplyXML);

Note: For more information about XML methods, see their entries in Chapter 7,
“ActionScript Dictionary.”This design is only an example, and we make no claims about
the level of security it provides. If you are implementing a secure password-protected
system, make sure you have a good understanding of network security.

Using the XMLSocket object

ActionScript provides a predefined XMLSocket object that allows you to open a
continuous connection with a server. A socket connection allows the server to
push information to the client as soon as that information is available. Without a
continuous connection, the server must wait for an HTTP request. This open
connection removes latency issues and is commonly used for real-time
applications such as chats. The data is sent over the socket connection as one
string and should be in XML format. You can use the XML object to structure the
data.

To create a socket connection, you must create a server-side application to wait for
the socket connection request and send a response to the Flash movie. This type of
server-side application can be written in a programming language such as Java.

You can use the ActionScript XMLSocket object’s connect and send methods to
transfer XML to and from a server over a socket connection. The connect
method establishes a socket connection with a Web server port. The send method
passes an XML object to the server specified in the socket connection.

When you invoke the XMLSocket object’s connect method, the Flash Player
opens a TCP/IP connection to the server and keeps that connection open until
one of the following happens:

• The close method of the XMLSocket object is called.

• No more references to the XMLSocket object exist.

• The Flash Player quits.

• The connection is broken (for example, the modem disconnects).
Chapter 4108

The following example creates an XML socket connection and sends data from
the XML object myXML. To understand the script, read the commented lines of
each script as indicated by the characters //:

//create a new XMLSocket object
sock = new XMLSocket();
//call its connect method to establish a connection with port 1024
//of the server at the URL
sock.connect("http://www.myserver.com", 1024);
//define a function to assign to the sock object that handles
//the servers response. If the connection succeeds, send the myXML
//object. If it fails, provide an error message in a text field.
function onSockConnect(success){

if (success){
sock.send(myXML);

} else {
msg=”There has been an error connecting to “+serverName;

}
}
//assign the onSockConnect function to the onConnect property
sock.onConnect = onSockConnect;

For more information, see the entry for XMLSocket in Chapter 7,
“ActionScript Dictionary.”

Creating forms
Flash forms provide an advanced type of interactivity—a combination of buttons,
movies, and text fields that let you pass information to another application on a
local or remote server. All common form elements (such as radio buttons, drop-
down lists, and check boxes) can be created as movies or buttons with the look
and feel of your Web site’s overall design. The most common form element is an
input text field.

Common types of forms that use such interface elements include chat interfaces,
order forms, and search interfaces. For example, a Flash form can collect address
information and send it to another application that compiles the information into
an e-mail message or database file. Even a single text field is considered a form and
can be used to collect user input and display results.

Forms require two main components: the Flash interface elements that make up
the form and either a server-side application or client-side script to process the
information that the user enters. The following steps outline the general
procedure for creating a form in Flash.
Integrating Flash with Web Applications 109

To create a form:

1 Place interface elements in the movie using the layout you want.

You can use interface elements from the Buttons-Advanced common library or
create your own.

2 In the Text Options panel, set text fields to Input and assign each a unique
variable name.

For more information about creating editable text fields, see Using Flash.

3 Assign an action that either sends, loads, or sends and loads the data.

Creating a search form

An example of a simple form is a search field with a Submit button. As an
introduction to creating forms, the following example provides instructions for
creating a search interface using a getURL action. By entering the required
information, users can pass a keyword to a search engine on a remote Web server.

To create a simple search form:

1 Create a button for submitting the entered data.

2 Create a label, a blank text field, and an instance of the button on the Stage.

Your screen should look like this:

3 Select the text field and choose Window > Panels > Text Options.

4 In the Text Options panel, set the following options:

• Choose Input Text from the pop-up menu.

• Select Border/Bg.

• Specify a variable name.

Note: Individual search engines may require a specific variable name. Go to the search
engine’s Web site for details.

5 On the Stage, select the button and choose Window > Actions.

The Object Actions panel appears.

Note: A check next to Actions in the Window menu indicates the panel is open.

6 Drag the getURL action from the toolbox to the Script window.
Chapter 4110

7 In the Parameters pane, set the following options:

• For URL, enter the URL of the search engine.

• For Window, select _blank. This will open a new window that displays the
search results.

• For Variables, select Send Using GET.

8 To test the form, choose File > Publish Preview > HTML.

Using variables in forms

You can use variables in a form to store user input. To set variables, you use
editable text fields or assign actions to buttons in interface elements. For example,
each item in a pop-up menu is a button with an action that sets a variable to
indicate the selected item. You can assign a variable name to an input text field.
The text field acts like a window that displays the value of that variable.

When you pass information to and from a server-side script, the variables in the
Flash movie must match the variables in the script. For example, if the script
expects a variable called password, the text field into which users enter the
password should be given the variable name password.

Some scripts require hidden variables, which are variables that the user never sees.
To create a hidden variable in Flash, you can set a variable on a frame in the movie
clip that contains the other form elements. Hidden variables are sent to the server-
side script along with any other variables set on the Timeline that contains the
action that submits the form.

Verifying entered data

For a form that passes variables to an application on a Web server, you’ll want to
verify that users are entering proper information. For example, you don’t want
users to enter text in a phone number field. Use a series of set variable actions
in conjunction with for and if to evaluate entered data.

The following sample action checks to see whether the entered data is a number,
and that the number is in the format ###-###-####. If the data is valid, the
message “Good, this is a valid phone number!” is displayed. If the data is not
valid, the message “This phone number is invalid!” is displayed.
Integrating Flash with Web Applications 111

To use this script in a movie, create two text fields on the Stage and choose Input
in the Text Options panel for each. Assign the variable phoneNumber to one text
field and assign the variable message to the other. Attach the following action to a
button on the Stage next to the text fields:

on (release) {
valid = validPhoneNumber(phoneNumber);
if (valid) {

message = "Good, this is a valid phone number!";
} else {

message = "This phone number is invalid!";
}
function isdigit(ch) {

return ch.length == 1 && ch >= '0' && ch <= '9';
}
function validPhoneNumber(phoneNumber) {

if (phoneNumber.length != 12) {
return false;

}
for (var index = 0; index < 12; index++) {

var ch = phoneNumber.charAt(index);
if (index == 3 || index == 7) {

if (ch != "-") {
return false;
}

} else if (!isdigit(ch)) {
return false;

}
}
return true;

}
}

To send the data, create a button that has an action similar to the following.
(Replace the getURL arguments with arguments appropriate for your movie.)

on (release) {
if (valid) {

getURL("http://www.webserver.com", "_self", "GET");
}

}

For more information about these ActionScript statements, see set, for, and if
in Chapter 7, “ActionScript Dictionary” on page 129”.
Chapter 4112

Sending messages to and from the
Flash Player
To send messages from a Flash movie to its host environment (for example, a Web
browser, a Director movie, or the stand-alone Flash Player), you can use the
fscommand action. This allows you to extend your movie by using the
capabilities of the host. For example, you could pass an fscommand action to a
JavaScript function in an HTML page that opens a new browser window with
specific properties.

To control a movie in the Flash Player from Web browser scripting languages such
as JavaScript, VBScript, and Microsoft JScript, you can use Flash Player
methods—functions that send messages from a host environment to the Flash
movie. For example, you could have a link in an HTML page that sends your
Flash movie to a specific frame.

Using fscommand

Use the fscommand action to send a message to whichever program is hosting the
Flash Player. The fscommand action has two parameters: command and
arguments. To send a message to the stand-alone version of the Flash Player, you
must use predefined commands and arguments. For example, the following action
sets the stand-alone player to scale the movie to the full monitor screen size when
the button is released:

on(release){
fscommand("fullscreen", "true");

}

The following table shows the values you can specify for the command and
arguments parameters of the fscommand action to control a movie playing in the
stand-alone player (including projectors):

command arguments Purpose

quit None Closes the projector.

fullscreen true or false Specifying true sets the Flash Player to full-
screen mode. Specifying false returns the player
to normal menu view.

allowscale true or false Specifying false sets the player so that the movie
is always drawn at its original size and never scaled.
Specifying true forces the movie to scale to
100% of the player.

showmenu true or false Specifying true enables the full set of context
menu items. Specifying false dims all the context
menu items except About Flash Player.

exec Path to
application

Executes an application from within the projector.
Integrating Flash with Web Applications 113

To use fscommand to send a message to a scripting language such as JavaScript in a
Web browser, you can pass any two arguments in the command and arguments
parameters. These arguments can be strings or expressions and will be used in a
JavaScript function that “catches,” or handles, the fscommand action.

An fscommand action invokes the JavaScript function moviename_DoFSCommand
in the HTML page that embeds the Flash movie, where moviename is the name of
the Flash Player as assigned by the NAME attribute of the EMBED tag or the ID
attribute of the OBJECT tag. If the Flash Player is assigned the name myMovie, the
JavaScript function invoked is myMovie_DoFSCommand.

To use the fscommand action to open a message box from a Flash movie in the
HTML page through JavaScript:

1 In the HTML page that embeds the Flash movie, add the following
JavaScript code:

function theMovie_DoFSCommand(command, args) {
if (command == "messagebox") {

alert(args);
}

}

If you publish your movie using the Flash with FSCommand template in the
HTML Publish Settings, this code is inserted automatically. The movie’s NAME
and ID attributes will be the file name. For example, for the file myMovie.fla,
the attributes would be set to myMovie. For more information about
publishing, see Using Flash.

2 In the Flash movie, add the fscommand action to a button:

fscommand("messagebox", "This is a message box invoked from
within Flash.")

You can also use expressions for the fscommand action and arguments, as in the
following example:

fscommand("messagebox", "Hello, " & name & ", welcome to our
Web site!")

3 Choose File > Publish Preview > HTML to test the movie.

The fscommand action can send messages to Macromedia Director that are
interpreted by Lingo as strings, events, or executable Lingo code. If the message is
a string or an event, you must write the Lingo code to receive it from the
fscommand action and carry out an action in Director. For more information, see
the Director Support Center at http://www.macromedia.com/support/director.

In Visual Basic, Visual C++, and other programs that can host ActiveX controls,
fscommand sends a VB event with two strings that can be handled in the
environment’s programming language. For more information, use the keywords
Flash method to search theFlash Support Center at http://
www.macromedia.com/support/flash.
Chapter 4114

About Flash Player methods

You can use Flash Player methods to control a movie in the Flash Player from Web
browser scripting languages such as JavaScript and VBScript. As with other
methods, you can use Flash Player methods to send calls to Flash Player movies
from a scripting environment other than ActionScript. Each method has a name,
and most methods take arguments. An argument specifies a value that the method
operates upon. The calculation performed by some methods returns a value that
can be used by the scripting environment.

There are two different technologies that enable communication between the
browser and the Flash Player: LiveConnect (Netscape Navigator 3.0 or later on
Windows 95/98/2000/NT or Power Macintosh) and ActiveX (Microsoft Internet
Explorer 3.0 and later on Windows 95/98/2000/NT). Although the techniques
for scripting are similar for all browsers and languages, there are additional
properties and events available for use with ActiveX controls.

For more information, including a complete list of the Flash Player scripting
methods, use the keywords Flash method to search theFlash Support Center at
http://www.macromedia.com/support/flash.
Integrating Flash with Web Applications 115

Chapter 4116

5

CHAPTER 5

. .. .
Troubleshooting ActionScript

The level of sophistication of some actions, especially in combination with one
another, can create complexity in Flash movies. As with any programming
language, you can write incorrect ActionScript that causes errors in your scripts.
Using good authoring techniques makes it easier to troubleshoot your movie
when something behaves unexpectedly.

Flash has several tools to help you test your movies in test-movie mode or in a
Web browser. The Debugger shows a hierarchical display list of movie clips
currently loaded in the Flash Player. It also allows you to display and modify
variable values as the movie plays. In test-movie mode, the Output window
displays error messages and lists of variables and objects. You can also use the
trace action in your scripts to send programming notes and values of expressions
to the Output window.

Authoring and troubleshooting guidelines
If you use good authoring practices when you write scripts, your movies will have
fewer bugs (programming errors). You can use the following guidelines to help
prevent problems and to fix them quickly when they do occur.

Using good authoring practices

It’s a good idea to save multiple versions of your movie as you work. Choose File >
Save As to save a version with a different name every half hour. You can use your
version history to locate when a problem began by finding the most recent file
without the problem. Using this approach, you’ll always have a functioning
version, even if one file gets corrupted.
117

Another important authoring practice is to test early, test often, and test on all
target platforms to find problems as soon as they develop. Choose Control > Test
Movie to run your movie in test-movie mode whenever you make a significant
change or before saving a version. In test-movie mode, the movie runs in a version
of the stand-alone player.

If your target audience will be viewing the movie on the Web, it’s important to test
the movie in a browser as well. In certain situations (for example, if you’re
developing an intranet site) you may know the browser and platform of your
target audience. If you’re developing for a Web site, however, test your movie in all
browsers on all potential platforms.

It’s a good idea to follow these authoring practices:

• Use the trace action to send comments to the Output window. (See Using
trace.)

• Use the comment action to include instructional notes that appear only in the
Actions panel. (See <<xref>>.)

• Use consistent naming conventions to identify elements in a script. For
example, it’s a good idea to avoid spaces in names. Start variable and function
names with a lowercase letter and use a capital letter for each new word
(myVariableName, myFunctionName). Start constructor function names with a
capital letter (MyConstructorFunction). It’s most important to pick a style
that makes sense to you and use it consistently.

• Use meaningful variable names that reflect what kind of information a variable
contains. For example, a variable containing information about the last button
pressed could be called lastButtonPressed. A name like foo would make it
difficult to remember what the variable contains.

• Use editable text fields in guide layers to track variable values as an alternative
to using the Debugger.

• Use the Movie Explorer in edit-movie mode to view the display list and view all
actions in a movie. See Flash Help.

• Use the for...in action to loop through the properties of movie clips,
including child movie clips. You can use the for...in action with the trace
action to send a list of properties to the Output window. See <<xref>>.

Using a troubleshooting checklist

As with every scripting environment, there are certain mistakes that scripters
commonly make. The following list is a good place to start troubleshooting your
movie:
Chapter 5118

• Make sure you’re in test-movie mode.

Only simple button and frame actions (for example, gotoAndPlay, and stop)
will work in authoring mode. Choose Control > Enable Simple Frame Actions
or choose Control > Enable Simple Buttons to enable these action.

• Make sure you do not have frame actions on multiple layers that conflict with
each other.

• If you’re working with the Actions panel in Normal Mode, make sure your
statement is set to expression.

If you are passing an expression in an action and haven’t selected the Expression
box, the value will be passed as a string. See <<xref>>.

• Make sure multiple ActionScript elements do not have the same name.

It’s a good idea to give every variable, function, object, and property a unique
name. Local variables are exceptions, though: they only need to be unique
within their scope and are often reused as counters. See Scoping a variable.

For more tips on troubleshooting a Flash movie, see the Flash Support Center at
http://www.macromedia.com/support/flash.

Using the Debugger
The Debugger allows you to find errors in a movie as it’s running in the Flash
Player. You can view the display list of movie clips and loaded movies and change
the values of variables and properties to determine correct values. You can then go
back to your scripts and edit them so that they produce the correct results. To use
the Debugger, you must run the Flash Debug Player, a special version of the Flash
Player.

The Flash Debug Player installs automatically with the Flash 5 authoring
application. It allows you to download the display list, variable name and value
pairs, and property name and value pairs to the Debugger in the Flash authoring
application.

To display the Debugger:

Choose Window > Debugger.

This opens the Debugger in an inactive state. No information appears in the
display list until a command is issued from the Flash Player.

To activate the Debugger in test-movie mode:

Choose Control > Debug Movie.
Troubleshooting ActionScript 119

This opens the Debugger in an active state.

Enabling debugging in a movie

When exporting a Flash Player movie, you can choose to enable debugging in
your movie and create a debugging password. If you don’t enable debugging, the
Debugger will not activate.

As in JavaScript or HTML, any client-side ActionScript variables can potentially
be viewed by the user. To store variables securely, you must send them to a server-
side application instead of storing them in the movie.

However, as a Flash developer, you may have other trade secrets, such as movie
clip structures, that you do not want revealed. To ensure that only trusted users
can watch your movies with the Flash Debug Player, you can publish your movie
with a Debugger password.

To enable debugging and create a password:

1 Choose File > Publish Settings.

2 Click the Flash tab.

3 Select Debugging Permitted.

4 To set a password, enter a password into the Password box.

Without this password, you cannot download information to the Debugger. If
you leave the password field blank, no password is required.

display list

Properties tab
Variables tab Watch list

status bar
Chapter 5120

To activate the Debugger in a Web browser:

1 Right-click (Windows) or Control-click (Macintosh) to open the Flash Debug
Player context menu.

2 Choose Debugger.

Note: You can use the Debugger to monitor only one movie at a time. To use the Debugger,
Flash must be open.

Flash Debug Player context menu

About the status bar

Once activated, the Debugger status bar displays the URL or local file path of the
movie. The Flash Player is implemented in different forms depending on the
playback environment. The Debugger status bar displays the type of Flash Player
running the movie:

• Test-movie mode

• Stand-alone player

• Netscape plug-in

The Netscape plug-in is used with Netscape Navigator on Windows and
Macintosh and in Microsoft Internet Explorer on Macintosh.

• ActiveX control

The ActiveX control is used with Internet Explorer on Windows.

About the display list

When the Debugger is active, it shows a live view of the movie clip display list.
You can expand and collapse branches to view all movie clips currently on the
Stage. When movie clips are added to or removed from the movie, the display list
reflects the changes immediately. You can resize the display list by moving the
horizontal splitter or by dragging from the bottom right corner.
Troubleshooting ActionScript 121

Displaying and modifying variables

The Variables tab in the Debugger displays the names and values of any variables
in the movie. If you change the value of a variable in the Variables tab, you can see
the change reflected in the movie while it runs. For example, to test collision
detection in a game, you could enter the variable value to position a ball in the
correct location next to a wall.

To display a variable:

1 Select the movie clip containing the variable from the display list.

2 Click the Variables tab.

The display list updates automatically as the movie plays. If a movie clip is
removed from the movie at a specific frame, that movie clip is also removed from
the display list in the Debugger; this removes the variable name and value.

To modify a variable value:

Select the value and enter a new value.

The value must be a constant value (for example, "Hello", 3523, or "http://
www.macromedia.com") not an expression (for example, x + 2, or eval("name:"
+i)). The value can be a string (any value surrounded by quotation marks ("")), a
number, or a Boolean (true or false).

Object and Array variables are displayed in the Variables tab. Click on the Add (+)
button to see their properties and values. However, you can’t enter Object or Array
values (for example, {name: "I am an object"} or [1, 2, 3]) in the values
fields.

Note: To output the value of an expression in test-movie mode, use the trace action. See
Using trace.
Chapter 5122

Using the watch list

To monitor a set of critical variables in a manageable way, you can mark variables
to appear in the watch list. The watch list displays the absolute path to the variable
and the value. You can also enter a new variable value in the watch list.

Only variables can be added to the watch list, not properties or functions.

Variables marked for the Watchlist and variables in the Watch list.

To add variables to the watch list, do one of the following:

• In the Variables tab, right-click (Windows) or Control-click (Macintosh) a
selected variable and choose Watch from the context menu. A blue dot appears
next to the variable.

• In the Watch tab, right-click (Windows) or Control-click (Macintosh) and
choose Add from the context menu. Enter the variable name and value in the
fields.

To remove variables from the watch list:

In the Watch tab, right-click (Windows) or Control-click (Macintosh) and choose
Remove from the context menu.

Displaying movie properties and changing editable properties

The Debugger Properties tab displays all the property values of any movie clip on
the Stage. You can change the value of a property and see the change reflected in
the movie while it runs. Some movie clip properties are read-only and cannot be
changed.
Troubleshooting ActionScript 123

To display a movie clip’s properties:

1 Select a movie clip from the display list.

2 Click the Properties tab.

To modify a property value:

Select the value and enter a new value.

The value must be a constant (for example, 50, or "clearwater") rather than an
expression (for example, x + 50). The value can be a string (any value surrounded
by quotation marks ("")), a number, or a Boolean (true or false). You can’t
enter object or array values (for example, {id: "rogue"} or [1, 2, 3]) in the
Debugger.

For more information, see <<xref>> and <<xref>>.

Note: To output the value of an expression in test-movie mode, use the trace action. See
Using trace.
Chapter 5124

Using the Output window
In test-movie mode, the Output window displays information to help you
troubleshoot your movie. Some information, such as syntax errors, is displayed
automatically. You can display other information by using the List Objects and
List Variables commands. (See Using List Objects and Using List Variables.)

If you use the trace action in your scripts, you can send specific information to
the Output window as the movie runs. This could include notes about the movie’s
status or the value of an expression. See Using trace.

To display the Output window:

1 If your movie is not running in test-movie mode, choose Control > Test Movie.

2 Choose Window > Output.

The Output window appears.

Note: If there are syntax errors in a script, the Output window appears automatically.

3 To work with the contents of the Output window, use the Options menu:

• Choose Options > Copy to copy the contents of the Output window to the
Clipboard.

• Choose Options > Clear to clear the window contents.

• Choose Options > Save to File to save the window contents to a text file.

• Choose Options > Print to print the window contents.

Using List Objects

In test-movie mode, the List Objects command displays the level, frame, object
type (shape, movie clip, or button) and target path of a movie clip instance in a
hierarchical list. This is especially useful for finding the correct target path and
instance name. Unlike the Debugger, the list does not update automatically as the
movie plays; you must choose the List Objects command each time you want to
send the information to the Output window.

To display a list of objects in a movie:

1 If your movie is not running in test-movie mode, choose Control > Test Movie.

2 Choose Debug > List Objects.
Troubleshooting ActionScript 125

A list of all the objects currently on the Stage is displayed in the Output window,
as in this example:

Layer #0: Frame=3
Movie Clip: Frame=1 Target=_root.MC
 Shape:
 Movie Clip: Frame=1 Target=_root.instance3
 Shape:
 Button:
 Movie Clip: Frame=1 Target=_root.instance3.instance2
 Shape:

Note: The List Objects command does not list all ActionScript data objects. In this context,
an object is considered to be a shape or symbol on the Stage.

Using List Variables

In test-movie mode, the List Variables command displays a list of all the variables
currently in the movie. This is especially useful for finding the correct variable
target path and variable name. Unlike in the Debugger, the list does not update
automatically as the movie plays; you must choose the List Variables command
each time you want to send the information to the Output window.

To display a list of variable in a movie:

1 If your movie is not running in test-movie mode, choose Control > Test Movie.

2 Choose Debug > List Variables.

A list of all the variables currently in the movie is displayed in the Output window,
as in this example:

Level #0:
 Variable _root.country = "Sweden"
 Variable _root.city = "San Francisco"
Movie Clip: Target=""
Variable _root.instance1.firstName = “Rick”

Using trace

When you use the trace action in a script, you can send information to the
Output window. For example, while testing a movie or scene, you can send
specific programming notes to the window or have specific results appear when a
button is pressed or a frame is played. The trace action is similar to the JavaScript
alert statement.
Chapter 5126

When you use the trace action in a script, you can use expressions as arguments.
The value of an expression is displayed in the Output window in test-movie
mode, as in the following:

onClipEvent(enterFrame){
trace("onClipEvent enterFrame " + enterFrame++)

}

The trace action returns values that are displayed in the Output window.
Troubleshooting ActionScript 127

Chapter 5128

6

CHAPTER 6

. .. .
ActionScript Dictionary

This portion of the ActionScript Reference Guide describes the syntax and use of
ActionScript elements in Flash 5 and later versions. The entries in this guide are
the same as those in ActionScript Dictionary Help. To use examples in a script,
copy the example text from ActionScript Dictionary Help and paste it in the
Actions panel in Expert Mode.

The dictionary lists all ActionScript elements—operators, keywords, statements,
actions, properties, functions, objects, and methods. For an overview of all
dictionary entries, see Contents of the dictionary; the tables in this section are a
good starting point for looking up symbolic operators or methods whose object
class you don’t know.

ActionScript follows the ECMA-262 standard (the specification written by the
European Computer Manufacturers Association) unless otherwise noted.

There are two types of entries in this dictionary:

„ Individual entries for operators, keywords, functions, variables, properties,
methods, and statements

„ Object entries, which provide general detail about predefined objects

Use the information in the sample entries to interpret the structure and
conventions used in these two types of entries.
129

Sample entry for most ActionScript
elements
The following sample dictionary entry explains the conventions used for all
ActionScript elements that are not objects. An ActionScript element can be an
operator, keyword, variable, function, action, event handler, method, property, or
any other entry in this dictionary, except the main Object entries discussed in the

Entry title

All entries are listed alphabetically. The alphabetization ignores capitalization,
leading underscores, and so on.

Syntax

The “Syntax” section provides correct syntax for using the ActionScript element in
your code. The code portion of the syntax is in code font, and the identifiers you
replace with the arguments or names of variables or objects are in italicized
code font. Brackets indicate optional arguments.

Arguments

This section describes any arguments listed in the syntax.

Description

This section identifies the element (for example, as an operator, method, function,
or other element) and then describes how the element is used.

Player

This section tells which versions of the Player support the element. This is not the
same as the version of Flash used to author content. For example, if you are
creating content for the Flash 4 Player using the Flash 5 authoring tool, you
cannot use ActionScript elements that are only available to the Flash 5 Player.

With the introduction of Flash 5 ActionScript, some Flash 4 (and earlier)
ActionScript elements have been deprecated. Although deprecated elements are
still supported by the Flash 5 Player, it is recommended that you use the new
Flash 5 elements.

In addition, operator functionality has been greatly expanded in Flash 5. Not only
have many new mathematical operators been introduced, but some of the older
operators are now capable of handling additional data types. To maintain data
type consistency, Flash 4 files are automatically modified when imported into the
Flash 5 authoring environment, but these modifications will not affect the
functionality of the original script. For more information, see the entries for +
(addition), < (less than), > (greater than), <= (less than or equal to), >= (greater
than or equal to), != (inequality), and = (equality).

Example

This section provides a code sample demonstrating how to use the element.
Chapter 6130

See also

This section lists related ActionScript dictionary entries.

Sample entry for objects
The following sample dictionary entry explains the conventions used for
predefined ActionScript objects. Objects are listed alphabetically with all other
elements in the dictionary.

Entry title

The entry title provides the name of the object. The object name is followed by a
paragraph containing general information about the object.

Method and property summary tables

Each object entry contains a table listing all of the methods associated with the
object. If the object has properties (often constants), these elements are
summarized in an additional table. All of the methods and properties listed in
these tables also have their own dictionary entries, which follow the object entry.

Constructor

If the object requires you to use a constructor to access its methods and properties,
the constructor is described at the end of the object entry. This description has all
of the standard elements (syntax description, and so on) of other dictionary
entries.

Method and property listings

The methods and properties of an object are listed alphabetically after the object
entry.

Contents of the dictionary
All dictionary entries are listed alphabetically. However, some operators are
symbols, and are presented in ASCII order. In addition, methods that are
associated with an object are listed along with the object’s name—for example, the
abs method of the Math object is listed as Math.abs.

The following two tables will help you locate these elements. The first table lists
the symbolic operators in the order in which they occur in the dictionary. The
second table lists all other ActionScript elements.
ActionScript Dictionary 131

Note: For precedence and associativity of operators, see Appendix A.

The following table lists all ActionScript elements that are not symbolic operators.

Symbolic operators

– – (decrement)
++ increment
! (logical NOT)
!= (inequality)
" " (string delimiter)
% (modulo)
%= (modulo assignment)
& (bitwise AND)
&& (short-circuit AND)
&= (bitwise AND assignment)
() (parentheses)
 – (minus)
* (multiplication)
*= (multiplication assignment)
, (comma)
. (dot)
/ (division)
// (comment delimiter)
/= (division assignment)
[] (array access)
^ (bitwise XOR)
^= (bitwise XOR assignment)
{} (object initializer)
| (bitwise OR)
|| (logical OR)
|= (bitwise OR assignment)
~ (bitwise NOT)
+ (addition)
+= (addition assignment)
< (less than)
<< (bitwise left shift)
<<= (bitwise left shift and assignment)
<= (less than or equal to)
= (assignment)
-= (negation assignment)
== (equality)
> (greater than)
>= (greater than or equal to)
>> (bitwise right shift)
>>= (bitwise right shift and assignment)
>>> (bitwise unsigned right shift)
>>>= (bitwise unsigned right shift and assignment)

ActionScript element See entry

abs Math.abs
Chapter 6132

acos Math.acos

add add

_alpha _alpha

appendChild XML.appendChild

Array Array (object)

asin Math.asin

atan Math.atan

atan2 Math.atan2

attachMovie MovieClip.attachMovie

attachSound Sound.attachSound

attributes XML.attributes

BACKSPACE Key.BACKSPACE

Boolean Boolean (function), Boolean (object)

break break

call call

CAPSLOCK Key.CAPSLOCK

ceil Math.ceil

charAt String.charAt

charCodeAt String.charCodeAt

childNodes XML.childNodes

chr chr

cloneNode XML.cloneNode

close XMLSocket.close

Color Color (object)

concat Array.concat, String.concat

connect XMLSocket.connect

constructor Array, Boolean, Color, Date, Number, Object, Sound,
String, XML, XMLSocket

continue continue
ActionScript Dictionary 133

CONTROL Key.CONTROL

cos Math.cos

createElement XML.createElement

createTextNode XML.createTextNode

_currentframe _ currentframe

Date Date (object)

delete (operator) delete

DELETE (constant) Key.DELETE

docTypeDecl XML.docTypeDecl

do...while do...while

DOWN Key.DOWN

_droptarget _droptarget

duplicateMovieClip duplicateMovieClip, MovieClip.duplicateMovieClip

E Math.E

else else

else if else if

END Key.END

end if end if

ENTER Key.ENTER

eq eq (equal—string version)

escape (function) escape

ESCAPE (constant) Key.ESCAPE

eval eval

evaluate evaluate

exp Math.exp

firstChild XML.firstChild

floor Math.floor

_focusrect _focusrect

for for
Chapter 6134

for.. in for. .in

_framesloaded _framesloaded

fromCharCode String.fromCharCode

fscommand fscommand

function function

ge ge (greater than or equal to—string version)

getAscii Key.getAscii

getBeginIndex Selection.getBeginIndex

getBounds MovieClip.getBounds

getBytesLoaded MovieClip.getBytesLoaded

getBytesTotal MovieClip.getBytesTotal

getCaretIndex Selection.getCaretIndex

getCode Key.getCode

getDate Date.getDate

getDay Date.getDay

getEndIndex Selection.getEndIndex

getFocus Selection.getFocus

getFullYear Date.getFullYear

getHours Date.getHours

getMilliseconds Date.getMilliseconds

getMinutes Date.getMinutes

getMonth Date.getMonth

getPan Sound.getPan

getProperty getProperty

getRGB Color.getRGB

getSeconds Date.getSeconds

getTime Date.getTime

getTimer getTimer

getTimezoneOffset Date.getTimezoneOffset
ActionScript Dictionary 135

getTransform Color.getTransform, Sound.getTransform

getURL getURL, MovieClip.getURL

getUTCDate Date.getUTCDate

getUTCDay Date.getUTCDay

getUTCFullYear Date.getUTCFullYear

getUTCHours Date.getUTCHours

getUTCMilliseconds Date.getUTCMilliseconds

getUTCMinutes Date.getUTCMinutes

getUTCMonth Date.getUTCMonth

getUTCSeconds Date.getUTCSeconds

getVersion getVersion

getVolume Sound.getVolume

getYear Date.getYear

globalToLocal MovieClip.globalToLocal

gotoAndPlay gotoAndPlay, MovieClip.gotoAndPlay

gotoAndStop gotoAndStop, MovieClip.gotoAndStop

gt gt (greater than—string version)

hasChildNodes XML.hasChildNodes

_height _height

_highquality _highquality

hitTest MovieClip.hitTest

HOME Key.HOME

if if

ifFrameLoaded ifFrameLoaded

include include

indexOf String.indexOf

Infinity Infinity

INSERT Key.INSERT

insertBefore XML.insertBefore
Chapter 6136

int int

isDown Key.isDown

isFinite isFinite

isNaN isNaN

isToggled Key.isToggled

join Array.join

Key Key (object)

lastChild XML.lastChild

lastIndexOf String.lastIndexOf

le le (less than or equal to—string version)

LEFT Key.LEFT

length length, Array.length, String.length

 LN2 Math.LN2

 LN10 Math.LN10

load XML.load

loaded XML.loaded

loadMovie loadMovie, MovieClip.loadMovie

loadVariables loadVariables, MovieClip.loadVariables

localToGlobal MovieClip.localToGlobal

log Math.log

LOG2E Math.LOG2E

 LOG10E Math.LOG10E

lt lt (less than—string version)

Math Math object

max Math.max

maxscroll maxscroll

 MAX_VALUE Number.MAX_VALUE

mbchr mbchr

mblength mblength
ActionScript Dictionary 137

mbord mbord

mbsubstring mbsubstring

min Math.min

MIN_VALUE Number.MIN_VALUE

MovieClip MovieClip (object)

_name _name

NaN NaN, Number.NaN

ne ne (not equal—string version)

NEGATIVE_INFINITY Number.NEGATIVE_INFINITY

new (operator) new

newline newline

nextFrame nextFrame, MovieClip.nextFrame

nextScene nextScene

nextSibling XML.nextSibling

nodeName XML.nodeName

nodeType XML.nodeType

nodeValue XML.nodeValue

not not

null null

Number Number (function), Number (object)

Object Object (object)

On On(mouseEvent)

onClipEvent onClipEvent

onClose XMLSocket.onClose

onConnect XMLSocket.onConnect

OnLoad XML.onLoad

onXML XMLSocket.onXML

ord ord

_parent _parent
Chapter 6138

parentNode XML.parentNode

parseFloat parseFloat

parseInt parseInt

parseXML XML.parseXML

PGDN Key.PGDN

PGUP Key.PGUP

PI Math.PI

play play, MovieClip.play

pop Array.pop

POSITIVE_INFINITY Number.POSITIVE_INFINITY

pow Math.pow

prevFrame prevFrame, MovieClip.prevFrame

previousSibling XML.previousSibling

prevScene prevScene

print print

printAsBitmap printAsBitmap

push Array.push

random random

removeMovieClip removeMoveClip, MovieClip.removeMovieClip

removeNode XML.removeNode

return return

reverse Array.reverse

RIGHT Key.RIGHT

_root _root

_rotation _rotation

round Math.round

scroll scroll

Selection Selection (object)

send XML.send, XMLSocket.send
ActionScript Dictionary 139

sendAndLoad XML.sendAndLoad

set(Variable) set

setDate Date.setDate

setFocus Selection.setFocus

setFullYear Date.setFullYear

setHours Date.setHours

setMilliseconds Date.setMilliseconds

setMinutes Date.setMinutes

setMonth Date.setMonth

setPan Sound.setPan

setProperty setProperty

setRGB Color.setRGB

setSeconds Date.setSeconds

setSelection Selection.setSelection

setTransform Color.setTransform, Sound.setTransform

setUTCDate Date.setUTCDate

setUTCFullYear Date.setUTCFullYear

setUTCHours Date.setUTCHours

setUTCMilliseconds Date.setUTCMilliseconds

setUTCMinutes Date.setUTCMinutes

setUTCMonth Date.setUTCMonth

setUTCSeconds Date.setUTCSeconds

setVolume Sound.setVolume

setYear Date.setYear

shift (method) Array.shift

SHIFT (constant) Key.SHIFT

sin Math.sin

slice Array.slice, String.slice

sort Array.sort
Chapter 6140

Sound Sound (object)

_soundbuftime _soundbuftime

SPACE Key.SPACE

splice Array.splice

split String.split

sqrt Math.sqrt

SQRT1_2 Math.SQRT1_2

SQRT2 Math.SQRT2

start Sound.start

startDrag startDrag, MovieClip.startDrag

status XML.status

stop stop, MovieClip.stop, Sound.stop

stopAllSounds stopAllSounds

stopDrag stopDrag, MovieClip.stopDrag

String String (function), String (object)

substr String.substr

substring substring, String.substring

swapDepths MovieClip.swapDepths

TAB Key.TAB

tan Math.tan

_target _target

targetPath targetPath

tellTarget tellTarget

this this

toggleHighQuality toggleHighQuality

toLowerCase String.toLowerCase

toString Boolean.toString, Number.toString, Object.toString,
XML.toString

_totalframes _totalframes
ActionScript Dictionary 141

toUpperCase String.toUpperCase

trace trace

typeof typeof

unescape unescape

unloadMovie unloadMovie, MovieClip.unloadMovie

unshift Array.unshift

UP Key.UP

updateAfterEvent updateAfterEvent

_url _url

UTC Date.UTC

valueOf Boolean.valueOf, Number.valueOf, Object.valueOf

var var

_visible _visible

void void

while while

_width _width

with with

_x _x

XML XML (object)

xmlDecl XML.xmlDecl

XMLSocket XMLSocket (object)

_xmouse _xmouse

_xscale _xscale

_y _y

_ymouse _ymouse

_yscale _yscale
Chapter 6142

–– (decrement)
Syntax
––expression
expression ––

Arguments

expression A variable, number, element in an array, or property of an object.

Description

Operator; a pre-decrement and post-decrement unary operator that subtracts 1
from the expression. The pre-decrement form of the operator (––expression)
subtracts 1 from the expression and returns the result. The post-decrement form
of the operator (expression––) subtracts 1 from the expression and returns the
initial value of the expression (the result prior to the subtraction).

Player

Flash 4 or later.

Example

The pre-decrement form of the operator decrements x to 2 (x - 1 = 2), and
returns the result as y:

x = 3;

y = --x

The post-decrement form of the operator decrements x to 2 (x - 1 = 2), and
returns the original value (x = 3) as the result y:

If x = 3;

y = x--

++ (increment)
Syntax
++expression
expression++

Arguments

expression A variable, number, element in an array, or property of an object.

Description

Operator; a pre-increment and post-increment unary operator that adds 1 to the
expression. The pre-increment form of the operator (++expression) adds 1 to
the expression and returns the result. The post-increment form of the operator
(expression++) adds one to the expression and returns the initial value of the
expression (the result prior to the addition).
ActionScript Dictionary 143

Example

The pre-increment form of the operator increments x to 2 (x + 1 = 2), and
returns the result as y:

x = 1;
y = ++x

The post-increment form of the operator increments x to 2 (x + 1 = 2), and
returns the original value (x = 1) as the result y:

x = 1;
y = x++

Player

Flash 4 or later.

Example

The following example uses the increment operator with a while statement:

i = 0
while(i++ < 5){
// this section will execute five times
}
An example of pre-incerment:

 var a = [];
 var i = 0;
 while (i < 10) {
 a.push(++i);
 }
 trace(a.join());
will print

 1,2,3,4,5,6,7,8,9
An example of post-increment

var a = [];
var i = 0;
while (i < 10) {
a.push(i++);
 }
trace(a.join());
will print

0,1,2,3,4,5,6,7,8,9

! (logical NOT)
Syntax
!expression

Arguments

expression A variable or evaluated expression.
Chapter 6144

Description

Operator (logical); inverts the Boolean value of a variable or expression. If the
expression is a variable with an absolute or converted value true, !variable
has the value false. If the expression x && y evaluates to false, the expression
!(x && y) evaluates to true. Identical to the not operator.

Player

Flash 4 or later.

Example

The following illustrates the value returned using the ! operator:

! true returns false

! false returns true

The following is an example of using a logical not operator in an if statement.

happy = false;

if (!happy){

trace("don’t worry be happy");

}

!= (inequality)
Syntax
expression1 != expression2

Arguments

expression A number, string, Boolean, variable, object, array, or function.

Description

Operator (equaltiy); tests for the exact opposite of the == operator. If
expression1 is equal to expression2, the result is FALSE. As with the ==
operator, the definition of equal depends on the data types being compared.

Numbers, strings, and Boolean values are compared by value.

Variables, objects, arrays, and functions are compared by reference.

Player

Flash 4 or later.

See Also
== equality.

Example

The following illustrates the return values for the != operator:

5 != 8 returns true
ActionScript Dictionary 145

5 != 5 returns false

The following example illustrates the use of the != operator in an if statement:

a = "David" ;
b = "Fool"
if (a != b)
trace("David is not a fool");

% (modulo)
Syntax
expression1 % expression2

Arguments

expression Numbers, integers, floating-point numbers, or strings that convert
to a numeric value.

Description

Operator (arithmetic); calculates the remainder of expression1 divided by
expression2. If either of the expression arguments are nonnumeric, the
modulo operator attempts to convert themto numbers.

Player

Flash 4 and 5. In Flash 4 files, the % opeator is expanded in the SWF file as x -
int(x/y) * y, and may not be as fast or as accurate as the Flash 5 Player
implementation.

Example

The following is a numeric example of using the % operator:

12 % 5 returns 2

4.3 % 2.1 returns 0.1

%= (modulo assignment)
Syntax
expression1 %+ expression2

Arguments

expression Integers and variables.

Description

Operator (assignment); assigns expression1 the value of expression1 %
expression2.

Player

Flash 4 or later.
Chapter 6146

Example

The following illustrates using the %= operator with variables and numbers:

x %= y is the same as x = x % y

If x = 14 and y = 5 then:

x %= 5 returns 4

& (bitwise AND)
Syntax
expression1 & expression2

Arguments

expression Any number.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit unsigned
integers, and performs a boolean AND operation on each bit of the integer
arguments. The result is a new 32-bit unsigned integer.

Player

In Flash 4 the & operator was used for concatenating strings. In Flash 5 the &
operator is a bitwise AND, and the add and + operators concatenate strings. Flash
4 files that use the & operator are automatically updated to use add when brought
into the Flash 5 authoring environment.

&& (short-circuit AND)
Syntax
expression1 && expression2

Arguments

expression A number, string, variable, or function.

Description

Operator (logical); performs a Boolean operation on the values of one or both of
the expressions. Causes the Flash interpreter to evaluate expression1 (the left
expression) and returns false if the expression evaluates to false. If
expression1 evaluates to true, expression2 (the right) is evaluated. If
expression2 evaluates to true, the final result istrue; otherwise, it is false.

Player

Flash 4 or later.
ActionScript Dictionary 147

Example

This example assigns the values of the evaluated expressions to the variables
winner and loser in order to perform a test:

winner = (chocolateEggs >=10) && (jellyBeans >=25);
loser = (chocolateEggs <=1) && (jellyBeans <= 5);
if (winner) {
 alert = "You Win the Hunt!";
 if (loser) {
 alert = "Now THAT'S Unhappy Hunting!";
 }
} else {
 alert = "We’re all winners!";
}

&= (bitwise AND assignment)
Syntax
expression1 &= expression2

Arguments

expression Integers and variables.

Description

Operator (bitwise assignment); assigns expression1 the value of expression1 &
expression2.

Player

Flash 5 or later.

Example

The following illustrates using the &= operator with variables and numbers:

x &= y is the same as x = x & y

If x = 15 and y = 9 then:

x &= 9 returns 9
Chapter 6148

() (parentheses)
Syntax
(expression1, expression2)
function(functionCall1, ..., functionCallN)

Arguments

expression A number, string, text, or variable.

function The function to be performed on the contents of the parentheses.

functionCall1...functionCalln A series of functions to execute before the
result is passed to the function outside the parentheses.

Description

Operator (general); performs a grouping operation on one or more arguments, or
surrounds one or more arguments and passes the results a a parameter to a
function outside the parentheses.

Usage 1: performs a grouping operation on one or more expressions to control the
order of execution of the operators in the expression. This operator overrides the
automatic precedence order, and causes the expressions within the parentheses to
be evaluated first. When parentheses are nested, Flash evaluates the contents are of
the innermost parentheses before the contents of the outer ones.

Usage2: surrounds one or more arguments and passes them as parameters to the
function outside the parentheses.

Player

Flash 4 or later.

Example

(Usage 1) The following statements illustrate the use of the parentheses operator
to control the order of execution of expressions(the result appears below each
statemen.

(2 + 3) * (4 + 5)
45
2 + (3 * (4 + 5))
29
2 + (3 * 4) + 5
19

Example

(Usage 2) The following example illustrates the use of the parentheses operator
with a function:

getDate()
invoice(item, amount)
ActionScript Dictionary 149

– (minus)
Syntax
(Negation): –expression
(Subtraction): expression1 - expression2

Arguments

expression Any number.

Description

Operator (arithmetic); used for negating or subtracting. When used for negating,
it reverses the sign of the numerical expression. When used for subtracting, it
performs an arithmetic subtraction on two numerical expressions, subtracting
expression2 from expression1. When both expressions are integers, the
difference is an integer. When either or both expressions are floating-point
numbers, the difference is a floating-point number.

Player

Flash 4 or later.

Example

(Negation): This statement reverses the sign of the expression 2 + 3:

-(2 + 3)

The result is -5.

Example

(Subtraction): This statement subtracts the integer 2 from the integer 5:

5 - 2

The result is 3, which is an integer.

(Subtraction): This statement subtracts the floating-point number 1.5 from the
floating-point number 3.25:

put 3.25 - 1.5

The result is 1.75, which is a floating-point number.
Chapter 6150

* (multiplication)
Syntax
expression1 * expression2

Arguments

expression Integers or floating-point numbers.

Description

Operator (arithmetic); multiplies two numerical expressions. If both expressions
are integers, the product is an integer. If either or both expressions are floating-
point numbers, the product is a floating-point number.

Player

Flash 4 or later.

Example

This statement multiplies the integers 2 and 3:

2 * 3

The result is 6, which is an integer.

Example

This statement multiplies the floating-point numbers 2.0 and 3.1416:

2.0 * 3.1416

The result is 6.2832, which is a floating-point number.

*= (multiplication assignment)
Syntax
expression1 *= expression2

Arguments

expression Integers, floating-point numbers, or strinsg.

Description

Operator (assignment); assigns expression1 the value of expression1 *
expression2.

Player

Flash 4 or later.

Example

The following illustrates using the *= operator with variables and numbers:

x *= y is the same as x = x * y

If x = 5 and y = 10 then:

x *= 10 returns 50
ActionScript Dictionary 151

, (comma)
Syntax
expression1, expression2

Arguments

expression Any number, variable, string, array element, or other data.

Player

Flash 4 or later.

Description

Operator; instructs Flash to evaluate expression1, then expression2, and
return the value of expression2. This operator is primarily used with the for
loop statement.

Example

The following code sample uses the comma operator:

var a=1, b=2, c=3;

This is the equivalent of writing the following:

var a=1;
var b=2;
var c=3;

. (dot operator)
Syntax
object.property_or_method

instancename.variable
instancename.childinstance.variable

Arguments

object An instance of an object. Some objects require that instances be created
using the constructor for that object. The object can be any of the objects available
in ActionScrip, Array, Boolean, Color, Date, Key, Selection, Sound, String, Math,
MovieClip, Number, XML, and XMLSocket. This argument is always to the left
of the dot (.) operator.

property_or_method The name of a property or method associated with an
object. All of the valid method and properties for an object, are listed in the
Method and Property summary tables for that object. This argument is always to
the right of the dot (.) operator.

instancename An instance of a movie clip.

childinstance An movie clip instance that is a child of the main movie clip.

variable A variable in a movieclip.
Chapter 6152

Description

Operator; used to test or set the properties of objects, execute a method of the
object, or to emulate a structure to access elements in an array. The dot operator is
also used to drill down movie clip hierarchies to access nested child movie clips,
variables, or properties.

Player

Flash 4 or later.

See Also
[] array access operator

Example

This statement identifies the current value of the variable hair Color contained
by the movie clip person:

person.hairColor

This is equivalent to the following Flash 4 syntax:

/person:hairColor

Example

The following code illustrates how the dot operator can be used to create a
structure of an array:

account.name = "Gary Smith";
account.address = "123 Main St ";
account.city = "Any Town";
account.state = "CA";
account.zip = "12345";
ActionScript Dictionary 153

/ (division)
Syntax
expression1 / expression2

Arguments

expression Any number.

Description

Operator (arithmetic); divides expression1 by expression2. The expression
arguments and results of the division operation are treated and expressed as
double-precision floating-point numbers.

Player

Flash 4 or later.

Example

This statement divides the floating-point number 22.0 by 7.0 and then displays
the result in the Output window:

trace (22.0 / 7.0);

The result is 3.1429, which is a floating-point number.

// (comment delimiter)
Syntax
// comment

Arguments

comment Text that is not part of the code, and should be ignored by the
interpreter.

Description

Operator; indicates the beginning of a script comment. Any text that appears
between the comment delimiter // and the end-of-line character is interpreted as a
comment and ignored by the ActionScript interpreter.

Player

Flash 1 or later.
Chapter 6154

Example

This script uses a double forward slash to identify the first, third, fifth, and
seventh lines as comments:

// set the X position of the log movie clip
log_x = getProperty("/log", _x);
// set the Y position of the log movie clip
log_y = getProperty("/log", _y);
// set the X position of the rabbi movie clip
rabbi_x = getProperty("/rabbi", _x);
// set the Y position of the rabbi movie clip
rabbi_y = getProperty("/rabbi", _y);

/= (division assignment)
Syntax
expression1 /= expression2

Arguments

expression Integers, floating-point numbers, or strinsg.

Description

Operator (assignment); assigns expression1 the value of expression1 /
expression2.

Player

Flash 4 or later.

Example

The following illustrates using the /= operator with variables and numbers:

x /= y is the same as x = x /y

If x = 10 and y = 2 then:

x /= 2 returns 5

[] (array access operator)
Syntax
array[expression]
object[expression]

Arguments

array The name of an array.

object The name of an object.

expression An integer (or expression that evaluates to an interger) if used with
array; a string (or expression that evaluates to a string) that refers to a property of
an object if used with object.
ActionScript Dictionary 155

Description

Operator; allows access to elements in an array or to properties of an object. You
can use it to access a variable whose name is a numeric value. You can also nest this
operator to gain access to multiple arrays.

Player

Flash 4 or later.

Example

The following is an example of a simple array.

myArray = ["red", "orange", "yellow", "green", "blue", "purple"]
myArray[0]="red"
myArray[1]="yellow"
myArray[2]="green"
myArray[3]="blue"
myArray[4]="purple"

^(bitwise XOR)
Syntax
expression1 ^ expression2

Arguments

expression Any number

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit unsigned
integers, and returns a 1 in each bit position where the corresponding bits in
expression1 or expression1, but not both, are 1.

Player

Flash 5 or later.

Example
15 ^ 9 returns 6
(1111 ^ 1001 = 0110)

^= (bitwise XOR assignment)
Syntax
expression1 ^= expression2

Arguments

expression Integers and variables.

Description

Operator (compound assignment); assigns expression1 the value of
expression1 ^ expression2.
Chapter 6156

Player

Flash 5 or later.

Example

The following illustrates using the ^= operator with variables and numbers:

x ^= y is the same as x = x ^ y

If x = 15 and y = 9 then:

15 ^= 9 returns 6

{} (object initializer)
Syntax
var newObject(property)
{

var expression
this.property = property1
this.property2 = expression

}

Arguments

newObject The object to create.

property1 A property of the object that defines the object to create.

property2 A second property (optional) that combines with property1 to
create the object.

Description

Operator; an alternative to using the new operator to create a new object. You can
also use this operator can also be used to nest arrays.

Player

Flash 5 or later.

See also

new operator

| (bitwise OR)
Syntax
expression1 | expression2

Arguments

expression Any number.
ActionScript Dictionary 157

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit unsigned
integers, and returns a 1 in each bit position where the corresponding bits of
either expression1 or expression2 are 1.

Player

Flash 5 or later.

Example
15 | 9 returns 15
(1111 | 1001 = 1111)

|| (or)
Syntax
expression1 || expression2

Arguments

expression A Boolean value or expression that converts to a Boolean value.

Description

Operator (logical); evaluates expression1 and expression2. The result is
(true) if either or both expressions evaluate to true; the result is (false) only if
both expressions evaluate to false.

With non-Boolean expressions, the logical OR operator causes Flash to evaluate
the expression on the left; if it can be converted to true, the result is true.
Otherwise, it evaluates the expression on the right the result is the value of that
expression.

Player

Flash 4 or later.

Example

The following example uses the logical OR operator in an if statement:

want = true;
need = true;
love = false;
if (want || need || love){
trace("two out of 3 ain’t bad");
}

|= (bitwise OR assignment)
Syntax
expression1 |= expression2

Arguments

expression Integers and variables.
Chapter 6158

Description

Operator (assignment); assigns expression1 the value of expression1 |
expression2.

Player

Flash 5 or later.

Example

The following illustrates using the |= operator with variables and numbers:

x |= y is the same as x = x | y

If x = 15 and y = 9 then:

x |= 9 returns 15

~ (bitwise NOT)
Syntax
~ expression

Arguments

expression Any number.

Description

Operator (bitwise); converts expression to a 32-bit unsigned integer, then
inverts the bits of the expression.

A bitwise NOT operation changes the sign of a number and subtracts 1.

Player

Flash 5 or later.

Example

The following example shows the results of a bitwise NOT operation performed
on a variable:

~a, returns -1 if a = 0, and returns -2 if a = 1, thus:

~0=-1 and ~1=-2

+ (addition)
Syntax
expression1 + expression2

Arguments

expression Integers, number, floating-point numbers, or strings.
ActionScript Dictionary 159

Description

Operator; adds numeric expressions or concatenates strings. If one expression is a
string, all other expressions are converted to strings and concatenated.

If both expressions are integers, the sum is an integer; if either or both expressions
are floating-point numbers, the sum is a floating-point number.

Player

In Flash 5, + is an arithmetic addition operator or string concatenator depending
on the data type of the argument. In Flash 4, + is only a numeric operator. Flash 4
files brought into the Flash 5 authoring environment undergo a conversion
process to maintain data type integrity. The first example below illustrates the
conversion process.

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison:

Flash 4 file:

x + y

Converted Flash 5 file:

Number(x) + Number(y)

This statement adds the integers 2 and 3 and then displays the result, 5, an
integer, in the Output window:

trace (2 + 3);

This statement adds the floating-point numbers 2.5 and 3.25 and displays the
result, 5.7500, a floating-point number, in the Output window:

trace (2.5 + 3.25);

This statement concatenates two strings and displays the result, “today is my
birthday” the Output window:

"today is my" + "birthday"

See Also
add operator

+= (addition assignment)
Syntax
expression1 += expression2

Arguments

expression Integers, floating-point numbers, or strings.
Chapter 6160

Description

Operator (compound assignment); assigns expression1 the value of
expression1+ expression2. This operator also performs string concatanation.

Player

Flash 4 or later.

Example

This following illustrates a numeric use of the += operator:

x += y is the same as x = x + y

If x = 5 and y = 10 then:

x += 10 returns 15

This example following illustrates using the += operator with a string expression:

x = "My name is";
x += "Mary"
The return value for the code above is as follows:

"My name is Mary"

< (less than)
Syntax
expression1 < expression2

Arguments

expression A number or string.

Description

Operator (comparison); compares two expressions and determines whether
expression1 is less than expression2 (true), or whether expression1 is
greater than or equal to expression2 (false). String expressions are evaluated
and compared based on the number of characters in the string.

Player

In Flash 5 < is a comparison operator capable of handling various data types. In
Flash 4 < is an numeric operator. Flash 4 files brought into the Flash 5 authoring
environment undergo a conversion process to maintain data type integrity. The
first example below illustrates the conversion process.

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison:

Flash 4 file:

x < y
ActionScript Dictionary 161

Converted Flash 5 file:

Number(x) < Number(y)

The following examples illustrate true and false returns for both numbers and
strings:

3 < 10 or "Al" < "Jack" return true
10 < 3 or "Jack" < "Al" return false

<< (bitwise left shift)
Syntax

expression1 << exprssion2

Arguments

expression1 A number, string, or expression to be shifted left.

expression2 A number, string, or expression that converts to an interger from
0 to 31.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit integers,
and shifts all of the bits in expression1 to the left by the number of places
specifed by the interger resulting from the conversion of expression2. The bit
positions that are emptied as a result of this operation are filled in with 0. Shifting
a value left by one postion is the equivalent of multiplying it by 2.

Player

Flash 5 or later.

Example

The following example shifts the integer 1, 10 bits to the left.

x = 1 << 10

The result of this operation is x = 1024. This is because 1 decimal = 1 binary, 1
binary shifted left by 10 is 10000000000 binary, and 10000000000 binary is
1024 decimal.

This following example shifts the integer 7, 8 bits to the left.

x = 7 << 8
The result of this operation is x = 1792. This is because 7 decimal = 111 binary,
111 binary shifted left by 8 bits is 11100000000 binary, and 11100000000 binary
is 1792 decimal.

See also

>>= (bitwise right shift compound assignment) example
Chapter 6162

<<= (bitwise left shift and assignment)
Syntax
expression1 <<= expression2

Arguments

expression1 A number, string or expression to be shifted left.

expression2 A number, string or expression that converts to an interger from 0
to 31.

Description

Operator (compound assignment); this operator performs a bitwise left shift
operation and stores the contents as a result in expression1.

Player

Flash 5 or later.

Example

The following two exprssions are equivalent.

A <<= B

A = (A << B)

See also

<< (bitwise left shift)

>>= (bitwise right shift and assignment) example
ActionScript Dictionary 163

<= (less than or equal to)
Syntax
expression1 <= expression2

Arguments

expression A number or string.

Description

Operator (comparison); compares two expressions and determines whether
expression1 is less than or equal to expression2 (true), or whether
expression1 is greater than expression2 (false).

Player

In Flash 5 <= is a comparison operator capbable of handling various data types.In
Flash 4 <= is an numeric operator. Flash 4 files brought into the Flash 5 authoring
environment undergo a conversion process to maintain data type integrity. The
first example below illustrates the conversion process.

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison:

Flash 4 file:

x <= y

Converted Flash 5 file:

Number(x) <= Number(y)

The following examples illustrate true and false returns for both numbers and
strings:

5 <= 10 or "Al" <= "Jack" returns true

10<= 5 or "Jack" <= "Al" returns false

= (assignment)
Syntax
expression1 = expression2

Arguments

expression1 A variable, element of an array, or property of an object.

expression2 A value of any type.

Description

Operator (assignment); assigns the type of expression2 (the argument on the
right) to the variable, array element, or property in expression1.
Chapter 6164

Player

In Flash 5 = is an assignment operator and the == operator is used to evaluate
equality. In Flash 4 = is a numeric equality operator. Flash 4 files brought into the
Flash 5 authoring environment undergo a conversion process to maintain data
type integrity. The first example below illustrates the conversion process.

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison:

Flash 4 file:

x = y

Converted Flash 5 file:

Number(x) == Number(y)

The following example uses the assignment operator to assign the number data
type to the variable x.

x = 5

The following example of uses the assignment operator to assign thestring data
type to the variable x.

x = "hello"

-=(negation assignment)
Syntax
expression1 -= expression2

Arguments

expression Integers, floating-point numbers, or strinsg.

Description

Operator (compound assignment); assigns expression1 the value of
expression1 - expression2.

Player

Flash 4 or later.

Example

The following illustrates using the -= operator with variables and numbers:

x -= y is the same as x = x - y

If x = 5 and y = 10 then:

x -= 10 returns -5
ActionScript Dictionary 165

==(equality)
Syntax
expression1 == expression2

Arguments

expression A number, string, boolean, variable, object, array, or function.

Description

Operator (equality); tests two expressions for equality. The result is true if the
expressions are equal.

The definition of equal depends on the data type of the argument:

Numbers, strings, and Boolean values are compared by value, and are considered
equal if they have the same value. For instance, two strings are equal if they have
the same number of characters.

Variables, objects, arrays, and functions are compared by reference. Two variables
are equal if they refer to the same object, array, or function. Two separate arrays are
never considered equal, even if they have the same number of elements.

Player

Flash 5 or later.

Example

The following example uses the == operator with an if statement:

a = "David" , b = "David";

if (a == b)

trace("David is David");

> (greater than)
Syntax
expression1 > expression2

Arguments

expression A string, integer, or floating-point number.

Description

Operator (comparison); compares two expressions and determines whether
expression1 is greater than expression2 (true), or whether expression1 is
less than or equal to expression2 (false).

Player

In Flash 5 > is a comparison operator capable of handling various data types. In
Flash 4 > is an numeric operator. Flash 4 files brought into the Flash 5 authoring
environment undergo a conversion process to maintain data type integrity. The
example below illustrates the conversion process.
Chapter 6166

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison:

Flash 4 file:

x >y

Converted Flash 5 file:

Number(x) >Number(y)

>= (greater than or equal to)
Syntax
expression1 >= expression2

Arguments

expression A string, integer, or floating-point number.

Description

Operator (comparison); compares two expressions and determines whether
expression1 is greater than or equal to expression2 (true), or whether
expression1 is less than expression2 (false).

Player

In Flash 5 >= is a comparison operator capable of handling various data types. In
Flash 4 >= is an numeric operator. Flash 4 files brought into the Flash 5 authoring
environment undergo a conversion process to maintain data type integrity. The
example below illustrates the conversion process.

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison:

Flash 4 file:

x >=y

Converted Flash 5 file:

Number(x) >=Number(y)

>>(bitwise right shift)
Syntax
expression1 >> expression2

Arguments

expression1 A number, string, or expression to be shifted right.
ActionScript Dictionary 167

expression2 A number, string, or expression that converts to an interger from
0 to 31.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit integers,
and shifts all of the bits in expression1 to the right by the number of places
specifed by the interger resulting from the conversion of expression2. Bits that
are shifted off to the right are discarded. To preserve the sign of the original
expression, the bits on the left are filled in with 0 if the most significant bit (the
bit farthest to the left) of expression1 is 0, and filled in with 1 if the most
significan bit is 1. Shifting a value right by one postion is the equivalent of
dividing by 2 and discarding the remainder.

Player

Flash 5 or later.

Example

The following example converts 65535 to a 32-bit interger, and shifts it 8 bits to
the right.

 x = 65535 >> 8

The result of the above operation is:

x = 255.

This is because, 65535 decimal = 1111111111111111 binary (16 1's), and
1111111111111111 binary shifted right by 8 bits is 11111111 binary, and
11111111 binary is 255 decimal. The most significant bit is 0 because the integers
are 32- bit, so the fill bit is 0.

The following example converts -1 to a 32-bit integer and shifts it 1 bit to the
right.

x = -1 >> 1

The result of the above operation is:

x = -1.

This is because -1 decimal = 11111111111111111111111111111111 binary (32
1's), and shifting right by one bit causes the least significant (bit fartheset to the
right) to be discarded, and the most significant bit to be filled in with 1. The
return result is 11111111111111111111111111111111 (32 1's) binary, which
represents the 32-bit integer -1.

See also

>>= (bitwise right shift compound assignment) example

>>= (bitwise right shift and assignment)
Syntax
expression1 <<= expression2
Chapter 6168

Arguments

expression1 A number, string or expression to be shifted left.

expression2 A number, string or expression that converts to an interger from 0
to 31.

Description

Operator (compound assignment); this operator performs a bitwise right shift
operation and stores the contents as a result in expression1.

Player

Flash 5 or later.

Example

The following two exprssions are equivalent.

A >>= B

A = (A >> B)

The following commmeted code uses the bitwise operator >>=, but can be
referenced as an example of using all bitwise operators.

function convertToBinary(number)
{
var result = "";
for (var i=0; i<32; i++) {
// Extract least significant bit using bitwise AND
var lsb = number & 1;
// Add this bit to our result string
result = (lsb ? "1" : "0") + result;
// Shift number right by one bit, to see next bit
}number >>= 1;
return result;
}
convertToBinary(479)
//Returns the string
00000000000000000000000111011111
//Which is the binary representation of the decimal number 479.

See also

>> (bitwise right shift)

>>> (bitwise unsigned right shift)
Syntax
expression1 >>> expression2
ActionScript Dictionary 169

Arguments

expression1 A number, string, or expression to be shifted right.

expression2 A number, string, or expression that converts to an interger from
0 to 31.

Description

Operator (bitwise); this operator is exactly the same as the bitwise right shift
operator except that it does not preserve the sign of the original expression as
the bits on the left are always filled with 0.

Player

Flash 5 or later.

Example

The following example converts -1 to a 32-bit integer and shifts it 1 bit to the
right.

x = -1 >>> 1

The result of the above operation is:

x = 2147483647.

This is because, -1 decimal is 11111111111111111111111111111111 binary
(32 1's), and when you shift right (unsigned) by one bit, the least significant
(rightmost) bit (1) is discarded, and the most significant bit (leftmost) is filled
with a 0. The return value is:

01111111111111111111111111111111 binary

This represents the 32-bit integer 2147483647.

See also

>>= (bitwise right shift and assignment) example

>>>= (bitwise unsigned right shift and
assignment)
Syntax
expression1 <<= expression2

Arguments

expression1 A number, string, or expression to be shifted left.

expression2 A number, string, or expression that converts to an interger from
0 to 31.

Description

Operator (compound assignment); this operator performs a unsigned bitwise
right shift operation and stores the contents as a result in expression1.
Chapter 6170

Player

Flash 5 or later.

Example

The following two exprssions are equivalent.

A >>>= B

A = (A >>> B)

See also

>>> (bitwise unsigned right shift)

>>= (bitwise right shift and assignment) example

ActionScript Elements
The following is a complete alphabetical list of the statements, keywords, top-level
variables, functions, properties, actions, and objects in ActionScript. All of the
methods and properties associated with an object are grouped together, as they are
listed by their full name which includes the object heading.

add
Syntax
string1 add string2

Arguments

expression Any string.

Description

Operator; concatenates two or more strings. Replaces the Flash 4 & operator;
Flash 4 files using the & operator are automatically converted to use the add
operator for string concatenation when brought into the Flash 5 authoring
environment. This operator is deprecated in Flash 5, and use of the + operator is
recommended when creating content for the Flash 5 Player. Use the add operator
to concatentate strings if you are creating content for Flash 4 or earlier versions of
the Player.

Player

Flash 4 or later.

See Also
+ operator
ActionScript Dictionary 171

_alpha
Syntax
instancename._alpha=value;

Arguments

value A number from 0 to 100 specifying the alpha transparency.

Description

Property; sets or retrieves the alpha transparency (value) of the movie clip.Valid
values are 0 (fully transparent) to 100 (fully opaque).

Player

Flash 4 or later.

Example

This statement sets the _alpha property of a movie clip named star to 30%
when the button is clicked.

on(release) {
 setProperty(star._alpha = 30);
}

Array

The Array object allows you to access and manipulate arrays. An array is an object
whose properties are identified by a number representing their position in the
array, instead of by name. This number is sometimes referred to as the index. All
arrays, are zero based, which means that the first element in the array is [0], the
second element is [1], and so on. In the following example, myArray contains the
months of the year, identified by number.

myArray[0] = "January"
myArray[1] = "February"
myArray[2] = "March"
myArray[3] = "April"

To create an Array object, use the constructor new Array. To access the elements
of an array use the operator [].
Chapter 6172

Method summary for the Array object

Property summary for the Array object

Constructor for the Array object
Syntax
new Array();
new Array(length);
new Array(element0,element1, element2...elementn);

Arguments

no argument If you don’t specify any arguments, a zero-length array is created.

length An integer specifying the number of elements in the array. In the case of
non-contiguous elements, the lenght specifies the index number of the last
element in the array plus 1. For more information, see the propoerty
array.length

element0,...elementn A list of two or more arbitary values. The values can
be numbers, names or other elements specified in an array. The first element in an
array always has the index or position 0.

Method Description

concat(); Concatenates the arguments and returns them as a new array.

join(); Joins all elements of an array into a string.

pop(); Removes the last element of an array, and returns it’s value.

push(); Adds one or more elements to the end of an array and returns the
new array’s length.

reverse(); Reverses the direction of an array.

shift(); Removes the first element from an array, and returns it’s value.

slice(); Extracts a section of an array and returns it as a new array.

sort(); Sorts an array in place.

splice(); Adds and/or removes elements from an array.

unshift(); Adds one or more elements to the beginning of an array and
returns the array’s new length.

Property Description

length Returns the length of the array.
ActionScript Dictionary 173

Description

Constructor; allows you to access and manipulate elements in an array. Arrays are
indexed by their ordinal number.

Player

Flash 5 or later.

Example

The following example creates a new array object with an intial length of 0.

myArray = new Array();

The following example creates the new array object A-Team, with an intial length
of 4.

A-Team = new Array ("Jody" , "Mary" , "Marcelle" , "Judy");

The initial elements of the A-Team array are:

myArray[0] = "Jody"
myArray[1] = "Mary"
myArray[2] = "Marcelle"
myArray[3] = "Judy"

Array.concat
Syntax
myArray.concat(value0,value1,....valuen);

Arguments

value0,...valuen Numbers, elements, or strings to be concatenated in a new
array.

Description

Method; concatenates the elements specified in the arguments, if any, and creates
and returns a new array. If the arguments specify an array, the elements of that
array are concatenated, rather than the array itself.

Player

Flash 5 or later.

Example

The following code concatenates two arrays:

alpha=new Array("a","b","c");
numeric=new Array(1,2,3);
alphaNumeric=alpha.concat(numeric); // creates array
["a","b","c",1,2,3]
Chapter 6174

The following code concatenates three arrays:

num1=[1,3,5];
num2=[2,4,6];
num3=[7,8,9];
nums=num1.concat(num2,num3) // creates array [1,3,5,2,4,6,7,8,9]

Array.join
Syntax
myArray.join();
array.join(separator);

Arguments

separator A character or string that separates array elements in the returned
string. If you omit this argument , a comma is used as the default separator.

Description

Method; converts the elements in an array to strings, concatenates them, inserts
the specified separator between the elements, and returns the resulting string.

Player

Flash 5 or later.

Example

The following example creates an array, with three elements. It then joins the array
three times: using the default separator, then a comma and a space, and then a
plus sign.

a = new Array("Earth","Moon","Sun")
// assigns "Earth,Moon,Sun" to myVar1
myVar1=a.join();
// assigns "Earth, Moon, Sun" to myVar2
myVar2=a.join(", ");
// assigns "Earth + Moon + Sun" to myVar3
myVar3=a.join(" + ");

Array.length

Syntax
myArray.length;

Arguments

None.
ActionScript Dictionary 175

Description

Property; returns the length of the array. This property is automatically adjusted
when new properties are assigned to the array. For example, if the property index
is assigned, and index is a number, newLength= index=1 is calculated. If
newLength is greater than length, then length is assigned the newly calculated
value of newLength.

Player

Flash 5 or later.

Example

Array.pop

Syntax
myArray.pop();

Arguments

None.

Description

Method; removes the last element from an array and returns the value of that
element.

Player

Flash 5 or later.

Example

The following code creates the myPets array containing four elements, then
removes its last element.

myPets = ["cat", "dog", "bird", "fish"];
popped = myPets.pop();

Array.push

Syntax
myArray.push(value, ...);

Arguments

value is one or more values to append to the array

Description

Method; adds one or more elements to the end of an array and returns the array’s
new length.
Chapter 6176

Player

Flash 5 or later.

Example

The following code creates the myPets array containing two elements, then adds
two elements to it. After the code executes, pushed contains 4.

myPets = ["cat", "dog"];
pushed = myPets.push("bird", "fish")

Array.reverse
Syntax
myArray.reverse();

Arguments

None.

Description

Method; reverses the array in place.

Player

Flash 5 or later.

Example

The following is an example of using the array.reverse method.

var numbers = [1, 2, 3, 4, 5, 6];
trace(numbers.join())
 numbers.reverse()
 trace(numbers.join())
Output:
 1,2,3,4,5,6
 6,5,4,3,2,1

Array.shift
Syntax
myArray.shift();

Arguments

None.

Description

Method; removes the first element from an array and returns that element.

Player

Flash 5 or later.
ActionScript Dictionary 177

Example

The following code creates the array myPets and then removes the first element
from the array:

myPets = ["cat", "dog", "bird", "fish"];
shifted = myPets.shift();

The return value is cat.

See Also
Array.pop

Array.unshift

Array.slice
Syntax
myArray.slice(start, end);

Arguments

start A number specifying the index of the starting point for the slice. If start
is a negative number, the starting point begins at the end of the array, where -1 is
the last element.

end A number specifying the index of the ending point for the slice. If you omit
this argument, the slice includes all elements from the start to the end of the array.
If end is a negative number, the ending point is specified from the end of the array,
where -1 is the last element.

Description

Method; extracts a slice or a substring of the array and returns it as a new array
without modifyingthe original array. The returned array includes the start
element and all elements up to, but not including the end element.

Player

Flash 5 or later.

Array.sort
Syntax
myArray.sort();
myArray.sort(orderfunc);

Arguments

orderfunc An optional comparison function used to determine the sorting
order. Given the arguments A and B, the specified ordering function should
perform a sort as follows:

-1 if A appears before B in the sorted sequence
Chapter 6178

0 if A = B

1 if A appears after Bin the sorted sequence

Description

Method; sorts the array in place, without making a copy. If you omit the
orderfunc argument, the elements are sorted in place using the < comparison
operator.

Player

Flash 5 or later.

Example

The following example of uses array.sort without specifying the orderfunc
argument.

var fruits = ["oranges", "apples", "strawberries",
 "pineapples", "cherries"];
 trace(fruits.join())
 fruits.sort()
 trace(fruits.join())
Output:
 oranges,apples,strawberries,pineapples,cherries
 apples,cherries,oranges,pineapples,strawberries
ActionScript Dictionary 179

Example

The following example uses array.sort with a specified order function.

var passwords = [
 "gary:foo",
 "mike:bar",
 "john:snafu",
 "steve:yuck",
 "daniel:1234"
];
 function order (a, b) {
 // Entries to be sorted are in form
 // name:password
 // Sort using only the name part of the
 // entry as a key.
 var name1 = a.split(':')[0];
 var name2 = b.split(':')[0];
 if (name1 < name2) {
 return -1;
 } else if (name1 > name2) {
 return 1;
 } else {
 return 0;
 }
 }
 for (var i=0; i< password.length; i++) {
 trace (passwords[entry]);
 }
 passwords.sort(order);
 trace ("Sorted:")
 for (var i=0; i< password.length; i++) {
 trace (passwords[entry]);
 }
Output:
 daniel:1234
 gary:foo
 john:snafu
 mike:bar
 steve:yuck

Array.splice
Syntax
myArray.splice(start, deleteCount, value0,value1....valuen);

Arguments

start The index of the element in the array where the insertion and/or
deletion begins.
Chapter 6180

deleteCount The number of elements to be deleted. This number includes the
element specified in the start argument. If no value is specified for
deleteCount, the method deletes all of the values from the start element to the
last element in the array.

value Values to insert into the array at the insertion point specified in the start
argument. This argument is optional.

Description

Method; adds and/or removes elements from an array. This method modifies the
array itself without making a copy.

Player

Flash 5 or later.

Array.unshift
Syntax
myArray.unshift(value1,value2.,.valueN);

Arguments

value One or more numbers, elements, or variables to be inserted at the
beginning of the array.

Description

Method; adds one or more elements to the beginning of an array and returns the
array’s new length.

Player

Flash 5 or later.

Boolean
Syntax
Boolean(expression);

Arguments

expression The variable, number, or string to be converted to a Boolean.

Description

Function; converts the specified argument to a Boolean, and returns the Boolean
value.

Player

Flash 5 or later.
ActionScript Dictionary 181

Boolean
The Boolean object is a simple wrapper object with the same functionality as the
standard JavaScript Boolean object. Use the Boolean object to retieve the
primitive data type or string representation of Boolean object.

Method summary for the Boolean object

Constructor for the Boolean object

Syntax
new Boolean();
new Boolean(expression);

Arguments

expression A number, string, boolean, object, movie clip, or other expression.
This argument is optional.

Description

Constructor; creates an instance of the Boolean object. If you omit the expression
argument, the Boolean object is initialized with a value of FALSE. If you specify
an expression, the method evaluates the argument and returns the result as a
Boolean value according to the following casting rules.

• If x is a number, the function returns TRUE if x does not equal 0, or FALSE if x
is any other number.

• If x is a Boolean, the function returns x.

• If x is an object or movie clip, the function returns TRUE if x does not equal
null; otherwise, the function returns FALSE.

• If x is a string, the function returns TRUE if Number(x) does not equal 0;
otherwise, the function returns FALSE.

Note: To maintain compatibility with Flash 4, the handling of strings by the Boolean object
is not ECMA-262 standard.

Player

Flash 5 or later.

Method Description

toString(); Returns the string representation of the Boolean object, true
or false.

valueOf(); Returns the primitive value type of the specified Boolean
object.
Chapter 6182

Boolean.toString
Syntax
Boolean.toString();

Arguments

None.

Description

Method; returns the string representation of the Boolean object, true or false.

Player

Flash 5 or later.

Boolean.valueOf
Syntax
Boolean.valueOf();

Arguments

None.

Description

Method; returns the primitive value type of the specified Boolean object, and
converts the Boolean wrapper object this primitive value type.

Player

Flash 5 or later.

break
Syntax
break;

Description

Action; appears within a loop (for, for..in, do...while or while). The break action
causes Flash to skip the rest of the loop body and stop the loop. Flash then
executes the statement following the loop statement. Use the break action to
break out of a series of nested loops.

Player

Flash 4 or later.

Example

The following is an example of using break to exit an otherwise infinite loop.

 i = 0;
 while (true) {
 if (i >= 100) {
ActionScript Dictionary 183

 break;
 }
 i++;
 }

call
Syntax
call(frame);

Arguments

frame The name or numbert of the frame clip to call into the context of the
script.

Description

Action; switches the context from the current script to the script of the frame
being called. Local variables will not exist once the script is finished executing.

Player

Flash 4 or later. This action is deprecated in Flash 5, and it is recommended that
you use the function action.

Example

chr
Syntax
chr(number);

Arguments

number The ASCII code number to convert to a character.

Description

String function; converts ASCII code numbers to characters.

Player

Flash 4 or later. This function has been deprecated in Flash 5 and use of the
string.fromCharCode method is recommended.

Example

The following example converts the number 65 to the letter “A”.

chr(65) = "A"

See also
string.fromCharCode
Chapter 6184

Color
The Color object allows your to set and and retrieve the RGB color value and
color transform of a movie clips. The Color object is supported by Flash 5 and
later versions of the Flash Player.

You must use the constructor new Color() to create an instance of the Color
object before calling the methods of the Color object.

Method summary for the Color object

Constructor for the Color object

Syntax
new Color(target);

Arguments

target The name of the movie clip the new color is applied to.

Description

Constructor; creates a Color object for the movie clip specified by the target
argument.

Player

Flash 5 or later.

Example

The following example creates a new color object myColor for the movie
myMovie.

myColor = new color(myMovie);

Color.getRGB
Syntax
myColor.getRGB();

Arguments

None.

Method Description

getRGB(); Returns the numeric RGB value set by the last setRGB call.

getTransform(); Returns the transform information set by the last setTransform call.

setRGB(); Sets the hexadecimal representation of the RGB value for a Color
object.

setTransform(); Sets the offset components for a Color object.
ActionScript Dictionary 185

Description

Method; returns the number values set by the last setRGB() call.

Player

Flash 5 or later.

Example

The following code retrieves the RGB value as a hexadecimal string:

value = (getRGB()).toString(16);

Color.getTransform
Syntax
myColor.getTransform();

Arguments

None.

Description

Method; returns transform value set by the last Color.setTransform call.

Player

Flash 5 or later.

Color.setRGB
Syntax
myColor.setRGB(0xRRGGBB);

Arguments

0xRRGGBB The hexadecimal or RGB color to be set. RR, GG, and BB, each consist
of two hexadecimal digits specifying the offset of each color component.

Description

Method; specifies an RGB color for the Color object. Calling this method
overrides any previous settings by the Color.setTransform method.

Player

Flash 5 or later.

Example

The following example sets the RGB color value for the movie clip myMovie.

myColor = newColor(myMovie);
myColor.setRGB(0x993366);
Chapter 6186

Color.setTransform
Syntax
myColor.setTransform(colorTransformObject);

Arguments

colorTransformObject A color transformobject created with the constructor
method of the generic object Object. The color transformobject has the
parameters ra, rb, ga, gb, ba, bb, aa, ab, which are explained below.

Description

Method; sets color transform information for a Color object. The
colorTransformObject argument is an object that you create using the generic
object Object with parameters specifying the percentage and offset values for the
red, green, blue, and alpha transparency components of a color, entered in a
0xRRGGBBAA format.

The parameters for a color transformobject are as follows:

• ra is the percentage for the red component (-100 to 100).

• rb is the offset for the red component (-255 to 255).

• ga is the percentage for the green component (-100 to 100).

• gb is the offset for the green component (-255 to 255).

• ba is the percentage for the blue component (-100 to 100).

• bb is the offset for the blue component (-255 to 255).

• aa is the percentage for alpha (-100 to 100).

• ab is the offset for alpha (-255 to 255).

You create a color transformobject as follows:

myColorTransform = new Object();
myColorTransform.ra = 50;
myColorTransform.rb = 244;
myColorTransform.ga = 40;
myColorTransform.gb = 112;
myColorTransform.ba = 12;
myColorTransform.bb = 90;
myColorTransform.aa = 40;
myColorTransform.ab = 70;

You could also use the following syntax:

myColorTransform = { ra: ‘50’, rb: ‘244’, ga: ‘40’, gb: ‘112’, ba:
‘12’, bb: ‘90’, aa: ‘40’, ab: ‘70’}

Player

Flash 5 or higher.
ActionScript Dictionary 187

Example

The following example creates a newColor object for a target movie, uses the
generic object Object constructor to create a color transform object, which gets
passed to the Color object using the setTransform method.

//Create a color object called myColor for the target myMovie

myColor = new Color(myMovie);

//Create a color transform object called myColorTransfrom using the generic
object Object

myColorTransform = new Object;

// Set the values for myColorTransform

myColorTransform = { ra: ‘50’ , rb: ‘244’ , ga: ‘40’ , gb: ‘112’ ,
ba: ‘12’ , bb: ‘90’ , aa: ‘40’ , ab: ‘70’ }

//Associate the color transform object with the color object created for myMovie

myColor.setTransform(myColorTransform);

continue
Syntax
continue;

Arguments

None.

Description

Action; appears within several types of loop statements.

In a while continue causes Flash to skip the rest of the loop body and jump to
the top of the loop, where the condition is tested.

In a do...while continue causes Flash to skip the rest of the loop body and
jump to the bottom of the loop, where the condition is tested.

In a for continue causes Flash to skip the rest of the loop body and jump to
the evaluation of the for loops post-expression

In a for...in continue causes Flash to skip the rest of the loop body and
jump back to the top of the loop, where the next value in the enumeration is
processed.

Player

Flash 4 or later.

Example
Chapter 6188

_currentframe
Syntax
instancename._currentframe

Arguments

None.

Description

Property; specifies the current frame of the movie clip.

Player

Flash 4 or later.

Example

The following example of uses _currentframe to direct a movie to go five frames
ahead of the frame containing the action:

gotoAndStop(_currentframe + 5)

Date
The Date object allows you to retreive date and time values relative to universal
time (Greenwich Mean Time, now called Univeral Coordinated Time) or relative
to the operating system on which the Flash Player is running. To call the methods
of the Date object, you must first create an instance of the Date object using the
constructor.

The Date object requires the Flash 5 player.

The methods of the Date object are not static, but apply only to the individual
instance of the Date object specified when the method is called.

Method summary for Date object

Method Description

getDate(); Returns the day of the month of the specified Date object
according to local time.

getDay(); Returns the day of the month for the specified Date object
according to local time.

getFullYear(); Returns the four-digit year of the specified Date object
according to local time.

getHours(); Returns the hour of the specified Date object according to
local time.

getMilliseconds(); Returns the milliseconds of the specified Date object
according to local time.
ActionScript Dictionary 189

getMinutes(); Returns the minutes of the specified Date object according
to local time.

getMonth(); Returns the month of the specified Date object according
to local time.

getSeconds(); Returns the seconds of the specified Date object
according to local time.

getTime(); Returns the number of milliseconds since midnight January
1, 1970 Universal Coordinated Time (UTC), for the
specified Date object.

getTimezoneOffset(); Returns the difference, in minutes, between the computer’s
local time and the Universal Coordinated Time (UTC).

getUTCDate(); Returns the day (date) of the month of the specified Date
object according to Universal Coordinated Time (UTC).

getUTCDay(); Returns the day of the week of the specified Date object
according to Universal Coordinated Time (UTC).

getUTCFullYear(); Returns the four=digit year of the specified Date object
according to Universal Coordinated Time (UTC).

getUTCHours(); Returns the hour of the specified Date object according to
Universal Coordinated Time (UTC).

getUTCMilliseconds(); Returns the milliseconds of the specified Date object
according to Universal Coordinated Time (UTC).

getUTCMinutes(); Returns the minute of the specified Date object according
to Universal Coordinated Time (UTC).

getUTCMonth(); Returns the month of the specified Date object according
to Universal Coordinated Time (UTC).

getUTCSeconds(); Returns the seconds of the specified Date object
according to Universal Coordinated Time (UTC).

getYear(); Returns the year of the specified Date object according to
local time.

setDate(); Returns the day of the month of a specified Date object
according to local time.

setFullYear(); Sets the full year for a Date object according to local time.

setHours(); Sets the hours for a Date object according to local time.

setMilliseconds(); Sets the milliseconds for a Date object according to local
time.

setMinutes(); Sets the minutes for a Date object according to local time.

setMonth(); Sets the month for a Date object according to local time.

setSeconds(); Sets the seconds for a Date object according to local time.

Method Description
Chapter 6190

Constructor for the Date object
Syntax
new Date();
new Date (year [, month[, day [, hour [, minute[, second [,
millisecond]]]]]])

Arguments

year A value of 0 to 99 indicates 1900 though 1999, otherwise all 4 digits of
the year must be specified.

month An integer from 0 (January) to 11 (December). This argument is
optional.

day An interger from 1 to 31. This argument is optional.

minute An integer from 0 to 59. This argument is optional.

second An integer from 0 to 59. This argument is optional.

millisecond An integer from 0 to 999. This argument is optional.

setUTCDate(); Sets the date of the specified Date object in Universal
Coordinated Time (UTC).

setUTCFullYear(); Sets the year of the specified Date object in Universal
Coordinated Time (UTC).

setUTCHours(); Sets the hour of the specified Date object in Universal
Coordinated Time (UTC).

setUTCMilliseconds(); Sets the milliseconds of the specifiedDate object in
Universal Coordinated Time (UTC).

setUTCMinutes(); Sets the minute of the specified Date object in Universal
Coordinated Time (UTC).

setUTCMonth(); Sets the month represented by the specified Date object in
Universal Coordinated Time (UTC).

setUTCSeconds(); Sets the seconds of the specified Date object in Universal
Coordinated Time (UTC).

setYear(); Sets the year for the specified Date object according to
local time.

Date.UTC(); Returns the number of milliseconds between midnight on
January 1, 1970, UTC, and the time specified in the
arguments. This is a static method invoked through the
Date object constructor, not through a specific Date
object.

Method Description
ActionScript Dictionary 191

Description

Object; constructs a new Date object holding the current date and time. .

Player

Flash 5 or later.

Example

The following example retreives the current date and time.

now = new Date();

The following example creates a new Date object for a Gary’s birthday, August 7,
1974.

gary_birthday = new Date (74, 7, 7);

This following example creates a new Date object, concatenates the returned
values of the date object methods getMonth, getDate, and getFullYear, and
displays them in the text field specified by the variable dateTextField.

myDate = new Date();
dateTextField = (mydate.getMonth() + "/" + myDate.getDate() + "/"
+ mydate.getFullYear());

Date.getDate
Syntax
myDate.getDate();

Arguments

None.

Description

Method; returns the day of the month (an integer from 1 to 31) of the specified
Date object according to local time.

Player

Flash 5 or later.

Date.getDay
Syntax
myDate.getDay();

Arguments

None.

Description

Method; returns the day of the month (0 for Sunday, 1 for Monday, and so on) of
the specified Date object according to local time. Local time is determined by the
operating system on which the Flash Player is running.
Chapter 6192

Player

Flash 5 or later.

Date.getFullYear
Syntax
myDate.getFullYear();

Arguments

None.

Description

Method; returns the full year (a four-digit number, for example, 2000) of the
specified Date object, according to local time. Local time is determined by the
operating system on which the Flash Player is running.

Player

Flash 5 or later.

Example

Th following example uses the Date constructor to create a new Date object and
send the value returned by the getFullYear method to the Output window.

myDate = new Date();
trace (myDate.getFullYear());

Date.getHours
Syntax
myDate.getHours();

Arguments

None.

Description

Method; returns the hour (an integer from 0 to 23) of the specified Date object,
according to local time. Local time is determined by the operating system on
which the Flash Player is running.

Player

Flash 5 or later.

Date.getMilliseconds
Syntax
myDate.getMilliseconds();
ActionScript Dictionary 193

Arguments

None.

Description

Method; returns the milliseconds (an integer from 0 to 999) of the specified Date
object, according to local time. Local time is determined by the operating system
on which the Flash Player is running.

Player

Flash 5 or later.

Date.getMinutes
Syntax
myDate.getMinutes();

Arguments

None.

Description

Method; returns the minutes (an integer from 0 to 59) of the specified Date
object, according to local time. Local time is determined by the operating system
on which the Flash Player is running.

Player

Flash 5 or later.

Date.getMonth
Syntax
myDate.getMonth();

Arguments

None.

Description

Method; returns the month (0 for January, 1 for February, and so on) of the
specified Date object, according to local time. Local time is determined by the
operating system on which the Flash Player is running.

Player

Flash 5 or later.

Date.getSeconds
Syntax
myDate.getSeconds();
Chapter 6194

Arguments

None.

Description

Method; returns the seconds (an integer from 0 to 59) of the specified Date
object, according to local time. Local time is determined by the operating system
on which the Flash Player is running.

Player

Flash 5 or later.

Date.getTime
Syntax
myDate.getTime();

Arguments

None.

Description

Method; returns the number of milliseconds (an integer from 0 to 999) since
midnight January 1, 1970 Universal Coordinated Time (UTC), for the specified
Date object. Use this method to represent a specific instant in time when
comparing two or more times defined in different time zones.

Player

Flash 5 or later.

Date.getTimezoneOffset
Syntax
mydate.getTimezoneOffset();

Arguments

None.

Description

Method; returns the difference, in minutes, between the computer’s local time and
the Universal Coordinated Time (UTC).

Player

Flash 5 or later.

Example

The following example returns the difference between the local Daylight Savings
Time for San Francisco, and the Universal Coordinated Time (UTC). Daylight
Savings Time is factored into the returned result, only if the date defined in the
date object is during the Daylight Savings time.
ActionScript Dictionary 195

new Date().getTimezoneOffset();

The result is as follows:

420 (7 hours * 60 minutes/hour = 420 minutes)

Date.getYear
Syntax
myDate.getYear();

Arguments

None.

Description

Method; returns the year of the specified Date object, according to local time.
Local time is determined by the operating system on which the Flash Player is
running.The year is the full year minus 1900. For example, the year 2000 is
represented as 100.

Player

Flash 5 or later.

Date.getUTCDate
Syntax
myDate.getUTCDate();

Arguments

None.

Description

Method; returns the day (date) of the month in the specified Date object,
according to Universal Coordinated Time (UTC).

Player

Flash 5 or later.

Date.getUTCDay
Syntax
myDate.getUTCDate();

Arguments

None.
Chapter 6196

Description

Method; returns the day of the month of the specified Date object, according to
Universal Coordinated Time (UTC).

Date.getUTCFullYear
Syntax
myDate.getUTCFullYear();

Arguments

None.

Description

Method; returns the year of the specified Date object, according to Universal
Coordinated Time (UTC).

Player

Flash 5 or later.

Date.getUTCHours
Syntax
myDate.getUTCHours();

Arguments

None.

Description

Method; returns the hours of the specified Date object, according to Universal
Coordinated Time (UTC).

Player

Flash 5 or later.

Date.getUTCMilliseconds
Syntax
myDate.getUTCMilliseconds();

Arguments

None.

Description

Method; returns the milliseconds of the specified Date object, according to
Universal Coordinated Time (UTC).

Player

Flash 5 or later.
ActionScript Dictionary 197

Date.getUTCMinutes
Syntax
myDate.getUTCMinutes();

Arguments

None.

Description

Method; returns the minutes of the specified Date object, according to Universal
Coordinated Time (UTC).

Player

Flash 5 or later.

Date.getUTCMonth
Syntax
myDate.getUTCMonth();

Arguments

None.

Description

Method; returns the month of the specified Date object, according to Universal
Coordinated Time (UTC).

Player

Flash 5 or later.

Date.getUTCSeconds
Syntax
myDate.getUTCSeconds();

Arguments

None.

Description

Method; returns the seconds in the specified Date object, according to Universal
Coordinated Time (UTC).

Player

Flash 5 or later.
Chapter 6198

Date.setDate
Syntax
myDate.setDate(day);

Arguments

day A integer from 1 to 31.

Description

Method; sets the day of the month for the specified Date object, according to local
time. Local time is determined by the operating system on which the Flash Player
is running.

Player

Flash 5 or later.

Date.setFullYear
Syntax
myDate.setFullYear(year [, month, [, day]]);

Arguments

year A four-digit number specifying a year. Two digit numbers do not represent
years, for example, 99 is not the year 1999, but the year 99.

month An integer from 0 (January) to 11 (December). This argument is
optional.

day A number from 1 to 31. This argument is optional.

Description

Method; sets the year of the specified Date object, according to local time. If the
month and day arguments are specified, they are also set to local time. Local time
is determined by the operating system on which the Flash Player is running.

The results of getUTCDay and getDay may change as a result of calling this
method.

Player

Flash 5 or later.

Date.setHours
Syntax
myDate.setHours(hours);

Arguments

hour An integer from 0 (midnight) to 23 (11 p.m.).
ActionScript Dictionary 199

Description

Method; sets the hours for the specified Date object according to local time. Local
time is determined by the operating system on which the Flash Player is running.

Player

Flash 5 or later.

Date.setMilliseconds
Syntax
myDate.setMilliseconds(milliseconds);

Arguments

millisecond An interger from 0 to 999.

Description

Method; sets the milliseconds for the specified Date object according to local
time. Local time is determined by the operating system on which the Flash Player
is running.

Player

Flash 5 or later.

Date.setMinutes
Syntax
myDate.setMinutes(minutes);

Arguments

minute An integer from 0 to 59.

Description

Method; sets the minutes for a specified Date object according to local time. Local
time is determined by the operating system on which the Flash Player is running.

Player

Flash 5 or later.

Date.setMonth
Syntax
myDate.setMonth(month [, day]);

Arguments

month An integer from 0 (January) to 11 (December).

day An integer from 1 to 31. This argument is optional.
Chapter 6200

Description

Method; sets the month for the specified Date object in local time. Local time is
determined by the operating system on which the Flash Player is running.

Player

Flash 5 or later.

Date.setSeconds
Syntax
myDate.setSeconds(seconds);

Arguments

second An integer from 0 to 59.

Description

Method; sets the seconds for the specified Date object in local time. Local time is
determined by the operating system on which the Flash Player is running.

Player

Flash 5 or later.

Date.setUTCFullYear
Syntax
myDate.setUTCFullYear(year [, month [, date]])

Arguments

year The year specified as a full four-digit year, for example, 2000.

month An integer from 0 (January) to 11 (December). This argument is
optional.

day An integer from 1 to 31. This argument is optional.

Description

Method; sets the year or the specified Date object (mydate) in Universal
Coordinated Time (UTC).

Optionally can also set the month and date represented by the specified Date
object. No other fields of the Date object are modified. Calling setUTCFullyear
may cause getUTCDay and getDay to report a new value if the day of the week
changes as a result of this operation.)

Player

Flash 5 or later.
ActionScript Dictionary 201

Date.setUTCDate
Syntax
myDate.setUTCDate(day);

Arguments

day An integer from 1 to 31.

Description

Method; sets the date for the specified Date object in Universal Coordinated Time
(UTC). Calling this method does not modify the other fields of the specified
Date, but the getUTCDay and getDay methods may report a new value if the day
of the week changes as a result of calling this method.

Player

Flash 5 or later.

Date.setUTCHours
Syntax
myDate.setUTCHours(hour [, min [, sec [, millisecond]]]));

Arguments

hour An integer from 0 (midnight) to 23 (11p.m.).

minute An integer from 0 to 59. This argument is optional.

second An integer from 0 to 59. This argument is optional.

millisecond An interger from 0 to 999. This argument is optional.

Description

Method; sets the hour for the specified Date object in Universal Coordinated
Time (UTC).

Player

Flash 5 or later.

Date.setUTCMilliseconds
Syntax
myDate.setUTCMilliseconds(millisecond);

Arguments

millisecond An interger from 0 to 999.

Description

Method; sets the milliseconds for the specified Date object in Universal
Coordinated Time (UTC).
Chapter 6202

Player

Flash 5 or later.

Date.setUTCMinutes
Syntax
myDate.setUTCMinutes(min [, sec [, millisecond]]));

Arguments

minute An integer from 0 to 59.

second An integer from 0 to 59. This argument is optional.

millisecond An interger from 0 to 999. This argument is optional.

Description

Method; sets tne minute for the specified Date object in Universal Coordinated
Time (UTC).

Player

Flash 5 or later.

Date.setUTCMonth
Syntax
myDate.setUTCMonth(month, [day]);

Arguments

month An integer from 0 (January) to 11 (December).

day An integer from 1 to 31. This argument is optional.

Description

Method; sets the month, and optionally the day, for the specified Date object in
Universal Coordinated Time (UTC). Calling this method does not modify the
other fields of the specified Date, but the getUTCDay and getDay methods may
report a new value if the day of the week changes as a result of specifying a day
argument when calling setUTCMonth.

Player

Flash 5 or later.

Example

Date.setUTCSeconds
Syntax
myDate.setUTCSeconds(sec [, millisecond]));
ActionScript Dictionary 203

Arguments

second An integer from 0 to 59.

millisecond An interger from 0 to 999. This argument is optional.

Description

Method; sets the seconds for the specified Date object in Universal Coordinated
Time (UTC).

Player

Flash 5 or later.

Date.setYear
Syntax
myDate.setYear(year);

Arguments

year A four-digit number, for example, 2000.

Description

Method; sets the year for the specified date object in local time. Local time is
determined by the operating system on which the Flash Player is running.

Player

Flash 5 or later.

Date.UTC
Syntax
date.UTC(year, month [, day [, hour [, minute [, second [,
milliesecond]]]]]);

Arguments

year A four-digit number, for example, 2000.

month An integer from 0 (January) to 11 (December).

day An integer from 1 to 31. This argument is optional.

hour An integer from 0 (midnight) to 23 (11p.m.).

minute An integer from 0 to 59. This argument is optional.

second An integer from 0 to 59.This argument is optional.

millisecond An interger from 0 to 999. This argument is optional.
Chapter 6204

Description

Method; returns the number of milliseconds between midnight on January 1,
1970, UTC, and the time specified in the arguments. This is a static method
invoked through the Date object constructor, not through a specific Date object,
i.e myDate. This method allows you to create a Date object that assumes UTC
time, whereas the Date constructor assumes local time.

Player

Flash 5 or later.

Example

The following example creates a new Date object gary_birthday defined in UTC
time. This is the UTC variation of the example used for the constructor method
newDate().

gary_birthday = new Date(Date.UTC(1974, 7, 8));

delete
Syntax
delete (reference)

Arguments

reference The name of variable or object to eliminate.

Description

Operator; eliminates the referenc, and returns true if the object was successfully
deleted.

Player

Flash 5 or later.

Example

do while
Syntax
do{
statement;
} while (condition);

Arguments

condition The condition to evaluate.

statement The statement to execute as long as condition evaluates to true.

Description

Action; executes the statements, and then evaluates the condition in a loop, for
as long as the condition is true.
ActionScript Dictionary 205

Player

Flash 4 or later.

Example

_droptarget
Syntax
draggableInstanceName._droptarget

Arguments

draggableInstanceName The name of a movie clip that was the target of a
startDrag action.

Description

Property (read-only); returns the absolute path of the movie clip instance on
which the draggableInstanceName was dropped.

Player

Flash 4 or later.

Example

The following example evaluates the _droptarget property of the garbage
movie clip instance, and if it was dropped on the trash movie clip instance the
visibility of garbage is set to false.

if (garbage._droptarget == _root.trash) {
garbage._visible = false;
} else {
garbage._x = x_pos
garbage._y = y_pos
}

The variables x_pos and y_pos are set on frame 1 of the movie with the following
script:

x_pos = garbage._x
y_pos = garbage._y

duplicateMovieClip
Syntax
duplicateMovieClip(target, newname, depth);

Arguments

target The target path of the movie to duplicate.

newname The name for the new instance of the duplicated movie clip. This is
the same as the name entered for the identifier in the Symbol Linkage Properties
dialog box. Each duplicated movie clip must have a unique instance name.
Chapter 6206

depth The depth level of the movie clip. The depth level is the stacking order
that determines how movie clips and other objects appear when they overlap. The
first movie clip that your create, or instance that you drag onto the stage, is
assigned a depth of level 0.You must assign each successive or duplicated movie
clip a different depth level to prevent them from replacing each other or the
original movie clip.

Description

Action; creates an instance of a movie clip while the movie is playing. Duplicate
movie clips always start at frame 1, no matter what frame the orignal movie clip
was on.

Use the removeMovieClip()statement to delete a movie clip instance created
with duplicateMovieClip().

Player

Flash 4 or later.

Example

This statement duplicates the movie clip instance flower ten times. The variable
i is used to create a new instance name and a depth.

on(release) {
 amount = 10;

while(amount>0) {
 duplicateMovieClip (_root.flower, "mc" + i, i);
 setProperty("mc" + i, _x, random(275));
 setProperty("mc" + i, _y, random(275));
 setProperty("mc" + i, _alpha, random(275));
 setProperty("mc" + i, _xscale, random(50));
 setProperty("mc" + i, _yscale, random(50));
 i = i + 1;
 amount = amount-1;
 }
}

See also
removeMovieClip

else
Syntax
else {statement(s)};

Arguments

statement(s) An alternative series of statements to run if the condition
specified in the if statement is false.

Description

Action; specifies the actions, clauses, arguments, or other conditional to run if the
intial if statement returns false.
ActionScript Dictionary 207

Player

Flash 4 or later.

Example

else if
Syntax
else if(condition) {statement(s);}

Arguments

condition (s) An expression that evaluates to true or false. This expression
is evaluated if the condition specified in the if statement was false.

statement(s) A series of statements to execute if the condition is true.

Description

Action; specifies additional else statements within an if statement.

Player

Flash 4 or later.

Example

See also
if

eq (equal—string version)
Syntax
expression1 eq expression2

Arguments

expression1, expression2 Numbers, strings, or variables.

Description

Comparison operator; compares two expressions for equality and returns true if
expression1 is equal to expression2; otherwise, returns false.

Player

Flash 1 or later. This operator has been deprecated in Flash 5; use of the new ==
equality operator is recommended.

See also

== (equality)
Chapter 6208

escape
Syntax
escape(expression);

Arguments

expression The expression to convert into a string and encode in a URL
encoded format.

Description

Function; converts the argument to a string and encodes it in a URL-encoded
format, where all alphanumeric characters are escaped with % hexadecimal
sequences.

Player

Flash 5 or later.

Example

escape("Hello{ [World] }");

The result of the above code is as follows:

Hello%7B%5BWorld%5D%7D

See also
unescape

eval
Syntax
eval(expression);

Arguments

expression A rsting, variable, or other expression.

Description

Function; accesses and evaluates expressions, and returns the value as a string.

Note: The ActionScript eval action is not the same as the Java Script eval function, and
cannot be used to evaluate statements.

Player

Flash 4 or later.

Example

evaluate
Syntax

statement;
ActionScript Dictionary 209

Arguments

None.

Description

Action; creates a new empty line and inserts a ; for entering unique scripting
statements using Expression field in the Actions panel. The evaluate statement is
for users who are scripting in the Flash 5 Actions panel’s Normal Mode.

Player

Flash 5 or later.

Example

for
Syntax
for(init; condition; next); {

statement;
}

Arguments

init An expression to evaluate before beginning the looping sequence.

condition An expression that evaluates to true or false.

next An expression to evaluate, usually an assignment expression using the ++
(increment) or -- (decrement) operators.

statement A statement within the body of the loop to execute.

Description

Action; evaluates the init (intialize) expression once, and then begins a loooping
sequence where as long as the condition evaluates to true, the statement is
executed and the next expression is evaluated.

Player

Flash 5 or later.

Example

The following example uses for to create an array.

for(i=0; i<10; i++) {
array [i] = (i + 5)*10;
}

Returns the following array:

[50, 60, 70, 80, 90, 100, 110, 120, 130, 140]

The following is an example of using for to perform the same action repeatedly.
In the code below the for loop adds the numbers from 1 to 100.

var sum = 0;
Chapter 6210

 for (var i=1; i<=100; i++) {
 sum = sum + i;
 }

for..in
Syntax
for(variable in object){

statement; }

Arguments

variable The name of a variable used to reference each property of an object,
or element in an array.

object The name of an object.

statement A statement to apply to each property of athe object. f

Description

Action; loops through the properties of an object or elements in an array, and
executes the statement for each property of an object.

The for...in construct iterates over properties of objects in the iterated object's
prototype chain. If the child's prototype is parent, iterating over the properties of
the child with for...in, will also iterate over the properties of parent.

Player

Flash 5 or later.

Example

The following is an example of using for..in to iterate over the properties of an
object.

myObject = { name:'Tara', age:27, city:'San Francisco' };
for (name in myObject) {
 trace ("myObject." + name + " = " + myObject[name]);
}

The output of this example is:

myObject.name = Tara
myObject.age = 27
myObject.city = San Francisco

The following is an example of using the typeof operator with for..in to iterate
over a particular type of child.

for (name in myMovieClip) {
 if (typeof (myMovieClip[name]) = "movieclip") {
 trace ("I have a movie clip child named " + name);
ActionScript Dictionary 211

 }
}

The following example enumerates the children of a movie clip and sends each
frame to 2 in their respective timelines. The RadioButtonGroup movie clip is a
parent with several children, _RedRadioButton_, _GreenRadioButton_
and_BlueRadioButton.

for (var name in RadioButtonGroup) {
 RadioButtonGroup[name].gotoAndStop(2);
}

_focusrect
Syntax

instancename._focusrect= boolean

setProperty("movieclip", _focusrect, "boolean");

Arguments

boolean Determines how the currently focused button or text field is
displayed.

movieclip The movie clip instance that has the focus.

Description

Global property; specifies whether a yellow rectangle appears around the button
or field that has the current focus. The default value TRUE (nonzero),displays a
yellow rectangle around the currently focused button or text field as the user
presses the Tab key to navigate. Specify FALSE to display only the button “Over”
state (if any defined) as users navigate.

Player

Flash 4 or later.

_framesloaded
Syntax
instancename._framesloaded = x;

Arguments

instancename The name of the movie clip to be evaluated.

x The frame number in the Timeline that signifies that the desired portion of
the movie has loaded.
Chapter 6212

Description

Property (read-only); determines whether the contents of a specific frame, and all
the frames before it, have loaded and are available locally in a user’s browser. This
property is useful for monitoring the download process of large movies, For
example, you might want to display a message to users indicating that the movie is
loading until a specified frame in the movie has finished loading.

Player

Flash 4 or later.

Example

The following is an example of using the _framesloaded property to coordinate
the start of the movie to the number of framesloaded.

if (Number(_framesloaded)>=Number(_totalframes)) {
gotoAndPlay ("Scene 1", "start");
} else {
setProperty ("/loader", _xscale, (_framesloaded/
_totalframes)*100);
}

fscommand
Syntax
fscommand(command, arguments);

Arguments

command A string passed to the host application for any use.

argument A string passed to the host application for any use.

Description

Action; allows the Flash movie to communicate with the program hosting the
Flash Player. In a Web browser, fscommand calls the JavaScript

moviename_Dofscommand in the HTML page containing the Flash movie, where
moviename is the name of the Flash Player as assigned by the NAME attribute of the
EMBED or OBJECT tag. If the Flash Player is assigned the name theMovie, the
JavaScript function called is theMovie_Dofscommand.

Player

Flash 3 or later.

Example
ActionScript Dictionary 213

function
Syntax
function functionname (argument0, argument1, ...argumentN){

statements...}

Arguments

functionname The name of a function.

argument Strings, numbers, or objects to pass to the function.

statements A user defined expression to be evaluated.

Description

Action; a generic function that you define to send a specific set arguments and
statements to the stand-alone Player.

Player

Flash 5 or later.

Example

ge (greater than or equal to—string version)
Syntax
expression1 ge expression2

Arguments

expression1, expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares expression1 to expression2 and returns
true if expression1 is greater than or equal to expression2; otherwise, returns
false.

Player

Flash 4 or later. This operator has been deprecated in Flash 5; use of the new >=
operator is recommended.

See also

>= (greater than or equal to)

gt (greater than -string version)
Syntax
expression1 gt expression2

Arguments

expression1,expression2 Numbers, strings, or variables.
Chapter 6214

Description

Operator (comparison); compares expression1 to expression2 and returns
true if expression1 is greater than expression2; otherwise, returns false.

Player

Flash 4 or later. This operator has been deprecated in Flash 5; use of the new
symbol > greater than operator is recommended.

See also

> (greater than)

getProperty
Syntax
getProperty(instancename , property);

Arguments

instancename The movie clip for which the property is being retreived.

property A property of a movie clip, such as an x or y coordinate.

Description

Function; returns the value of the specifiedproperty for the movie clip instance.

Player

Flash 4 or later.

Example

The following example retreives the horizontal axis coordinate (_x) for the movie
clip myMovie.

getProperty(_root.myMovie_item._x)

getTimer
Syntax
getTimer();

Arguments

None.

Description

Function; returns the number of milliseconds that have elapsed since the movie
started playing.

Player

Flash 4 or later.
ActionScript Dictionary 215

getURL
Syntax
getURL(url, [, window, variables]]);

Arguments
url The URL from which to obtain the document. The URL must be in the
same subdomain as the URL where the movie currently resides.
window An optional argument specifying the window or HTML frame that the
document should be loaded into. Enter the name of a specific window or choose
from the following reserved target names:

• _self specifies the current frame in the current window.

• _blank specifies a new window.

• _parent specifies the parent of the current frame.

• _top specifies the top-level frame in the current window.

variables An optional argument specifying a method for sending variables. If
there are no variables, leave this argument blank; otherwise, specify whether to
load variables using a GET or POST method. GET appends the variables to the end
of the URL, and is used for small numbers of variables. POST sends the variables in
a separate HTTP header and is used for long strings of variables.

Description

Action; loads a document from a specific URL into a window, or passes variables
to another application at a defined URL. To test this action, make sure the file to
be loaded is at the specified location. To use absolute URLs (for example, http://
www.myserver.com), you need a network connection

Player

Flash 2 or later. The GET and POST options are only available to Flash 4 and
later versions of the Player.

Example

This example loads a new URL into a blank browser window. The getURL action
targets the variable incomingAd as the url parameter so that the loaded URL can
be changed without having to edit the Flash movie. The incomingAd variable’s
value is passed into Flash earlier in the movie using a loadVariables action.

on(release) {
 getURL(incomingAd, "_blank");
}

See Also
loadVariables, XML.send, XML.sendandload, XMLSocket.send
Chapter 6216

getVersion
Syntax
getVersion();

Arguments

None.

Description

Function; returns a string containing Flash Player version and platform
information.

This function does not work in test-movie mode, and will only return a
information for versions 5 or later of the Flash Player.

Example

The following is an example of a string returned by the getVersion function:

WIN 5,0,17,0

This indicates that the platform is Windows, and the version number of the Flash
Player is major version 5, minor version 17(5.0r17).

Player

Flash 5 or later.

gotoAndPlay
Syntax
gotoAndPlay(scene,frame);

Arguments

scene The scene name to which the playhead is sent.

frame The frame number to which the playhead is sent.

Description

Action; sends the playhead to the specified frame in a scene and plays from that
frame. If no scene is specified, the playhead goes to the specified frame in the
current scene.

Player

Flash 2 or later.

Example

When the user clicks a button that the gotoAndPlay action is assgined to, the
playhead is sent to frame 16 and starts to play.

on(release) {
 gotoAndPlay(16);
}

ActionScript Dictionary 217

gotoAndStop
Syntax
gotoAndStop(scene,frame);

Arguments

scene The scene name to which the playhead is sent.

frame The frame number to which the playhead is sent.

Description

Action; sends the playhead to the specified frame in a scene and stops it. If no
scene is specified, the playhead is sent to the frame in the current scene.

Player

Flash 2 or later.

Example

When the user clicks a button that the gotoAndStop action is assgined to, the
playhead is sent to frame 5 and the movie stops playing.

on(release) {
 gotoAndStop(5);
}

_height
Syntax
instancename._height=value;

Arguments

instancename An instance name of a movie clip for which the _height
property is to be set or retreived.

value An integer specifiying the height of the movie in pixels.

Description

Property; sets the height of the movie. In previous versions of Flash, _height and
_width, were read-only properties, in Flash 5 these properties can be set.

Player

Flash 4 or later.

Example

The following code example sets the height and width of a movie clip when the
user clicks the mouse.

onclipEvent(mouseDown) {
_width=200;
_height=200;
}

Chapter 6218

_highquality
Syntax
instancename._highquality=value;

Arguments

movieclip The instance name of the movie clip for which the property is being
set or retreived.

value The level of anti-aliasing applied to the movie. Specify 2 (BEST) to apply
high quality with bitmap smooting always on. Specify 1 (high quality) to apply
anti-aliasing; this will smooth bitmaps if the movie does not contain animation.
Specify 0 (low quality) to prevent anti-aliasing.

Description

Global property; specifies the level of anti-aliasing applied to the current movie.

Player

Flash 4 or later.

Example

if
Syntax
if(condition) {

statement;

{

Arguments

conditional An expression that evaluates to true or false. For example,
if(name == "Erica"), evaluates the variable “name” to see if it is “Erica.”

statements The instructions to execute if or when the condition evaluates to
true.

Description

Action; evaluates a condition to determine the next action in a movie. If the
condition is true, Flash runs the statements that follow.Use if to create
branching logic in your scripts.

Player

Flash 4 or later.
ActionScript Dictionary 219

Example

ifFrameLoaded
Syntax
ifFrameLoaded(scene, frame) {
statement;}

Arguments

scene The scene that is being queried.

frame The frame number or frame label required to load before the next
statement is executed.

Description

Action; checks whether the contents of a specific frame are available locally. Use
ifFrameLoaded to start playing a simple animation while the rest of the movie
downloads to the local computer. The difference between using _framesloaded
and ifFrameLoaded is that _framesloaded allows you to add if, else or else
if statements, while the ifFrameLoaded action allows you to specify a specific
number of frames in one simple statement.

Player

Flash 3 or later. The ifFrameLoaded action is deprecated in Flash 5 and use of the
_framesloaded action is encouraged.

See also
_framesloaded

include
Syntax
#include "filename.as"

Arguments

filename.as The filename to include; .as is the recommended file extension.

Description

Action; includes the contents of the file specified in the argument when the movie
is tested, published or exported.

Player

Flash 5 or later.

Example
Chapter 6220

Infinity
Syntax
Infinity;

Arguments

None.

Description

Top-level variable; a predefined variable with the ECMA-262 value for infinity.

Player

Flash 5 or later.

int
Syntax
int(value)

Arguments

value A number to be rounded to an integer.

Description

Function; converts a decimal number to the closest integer value.

Player

Flash 4 or later. This function has been deprecated in Flash 5, and use of the
Math.floor method is encouraged.

isFinite
Syntax
isFinite(expression);

Arguments

expression The Boolean, variable, or other expression to be evaluated.

Description

Top-level function; evaluates the argument and returns true if it is a finite
number, and FALSE if it is infinity or negative infinity. The presence of infinity or
negative infinity indicates a mathematical error condition such as divsion by 0.

Player

Flash 5 or later.

Example

The following are examples of return values for isFinite:

isFinite(56) returns TRUE
ActionScript Dictionary 221

IsFinite(Number.POSITIVE_INFINITY) returns False

IsNaN(Number.POSITIVE_INFINITY) returns False

isNaN
Syntax
isNaN(expression);

Arguments

expression The expression Boolean, variable, or other expression to be
evaluated.

Description

Top-level function; evaluates the argument and returns true if the value is not a
number (NaN), indicating the presence of mathematical errors.

Player

Flash 5 or later.

Example

The following illustrates the return value for isNan:

isNan("Tree") returns TRUE

isNan(56) returns FALSE

IsNaN(Number.POSITIVE_INFINITY) returns False

Key
The Key object is a top-level object that you can be access without using a
constructor. Use the methods for the Key object to build an interface that can be
controlled by a user with a standard keyboard. The properties of the Key object
are constants representing the keys most commonly used to control games. See
Appendix B , for a complete list of keycode values corresponding to the keys on a
standard keyboard.

Example

onClipEvent (enterFrame) {
 if(Key.isDown(Key.RIGHT)) {
 setProperty ("", _x, _x+10);
 }
}
or
onClipEvent (enterFrame) {
 if(Key.isDown(39)) {
 setProperty("", _x, _x+10);
Chapter 6222

 }
}

Method summary for the Key object

Property summary for the Key object

All of the properties for the Key object are constants.

Method Description

getAscii(); Returns the ASCII value of the last key pressed.

getCode(); Returns the virtual key code of the last key pressed.

isDown(); Returns true if the key specified in the argument is pressed.

isToggled(); Returns true if the Num Lock or Caps Lock key is
activated.

Property Description

BACKSPACE Constant associated with the keycode value for the backspace key
(9).

CAPSLOCK Constant associated with the keycode value for the Caps Lock key
(20).

CONTROL Constant associated wtih the keycode value for the control key
(17).

DELETEKEY Constant associated with the keycode value for the delete key
(46).

DOWN Constant associated with the keycode value for the down arrow
key (40).

END Constant associated with the keycode value for the end key (35).

ENTER Constant associated with the keycode value for the enter key (13).

ESCAPE Constant associated with the keycode value for the escape key
(27).

HOME Constant associated with the keycode value for the home key (36).

INSERT Constant associated with the keycode value for the insert key (45).

LEFT Constant associated with the keycode value for the left arrow key
(37).

PGDN Constant associated with the keycode value for the page down key
(34).
ActionScript Dictionary 223

Key.BACKSPACE
Syntax
Key.BACKSPACE

Arguments

None.

Description

Property; constant associated with the keycode value for the backspace key (9).

Player

Flash 5 or later.

Key.CAPSLOCK
Syntax
Key.CAPSLOCK

Arguments

None.

Description

Property; constant associated with the keycode value for the Caps Lock key (20).

Player

Flash 5 or later.

Key.CONTROL
Syntax
Key.CONTROL

PGUP Constant associated with the keycode value for the page up key
(33).

RIGHT Constant associated with the keycode value for the right arrow key
(39).

SHIFT Constant associated with the keycode value for the shift key (16).

SPACE Constant associated with the keycode value for the space bar (32).

TAB Constant associated with the keycode value for the Tab key (9).

UP Constant associated with the keycode value for the Up arrow key
(38.

Property Description
Chapter 6224

Arguments

None.

Description

Property; constant associated with the keycode value for the control key (17).

Player

Flash 5 or later.

Key.DELETEKEY
Syntax
Key.DELETE

Arguments

None.

Description

Property; constant associated with the keycode value for the delete key (46).

Player

Flash 5 or later.

Key.DOWN

Syntax
Key.DOWN

Arguments

None.

Description

Property; constant associated with the keycode value for the down arrow key (40).

Player

Flash 5 or later.

Key.END

Syntax
Key.END

Arguments

None.
ActionScript Dictionary 225

Description

Property; constant associated with the keycode value for the end key (35).

Player

Flash 5 or later.

Key.ENTER

Syntax
Key.ENTER

Arguments

None.

Description

Property; constant associated with the keycode value for the enter key (13).

Player

Flash 5 or later.

Key.ESCAPE

Syntax
Key.ESCAPE

Arguments

None.

Description

Property; constant associated with the keycode value for the escape key (27).

Player

Flash 5 or later.

Key.getAscii
Syntax
key.getAscii();

Arguments

None.

Description

Method; returns the ASCII code of the last key pressed or released.
Chapter 6226

Player

Flash 5 or later.

Key.getCode
Syntax
key.getCode();

Arguments

None.

Description

Method; returns the keycode value of the last key pressed. Use the information in
the table into match the returned keycode value with the virtual key on a standard
keyboard.

Player

Flash 5 or later.

Key.HOME
Syntax
Key.HOME

Arguments

None.

Description

Property; constant associated with the keycode value for the home key (36).

Player

Flash 5 or later.

Key.INSERT
Syntax
Key.INSERT

Arguments

None.

Description

Property; constant associated with the keycode value for the insert key (45).

Player

Flash 5 or later.
ActionScript Dictionary 227

Key.isDown
Syntax
key.isDown(keycode);

Arguments

keycode The keycode value assigned to a specific key, or a Key object property
associated with a specific key. The table in Appendix B lists all of the keycodes
associated with the keys on a standard keyboard. The Property summary table for
the Key object lists the available key constants.

Description

Method; returns true if the key specified in keycode is pressed. On the
Macintosh the return value for Caps Lock and Num Lock key is the same as for
key.isToggled.

Player

Flash 5 or later.

Key.isToggled
Syntax
key.isToggled(keycode)

Arguments

keycode The keycode for Caps Lock (20) or Num Lock (144).

Description

Method; returns true if the Caps Lock or Num Lock key is activated (toggled).
On the Mac, the keycode value for these keys is identical.

Player

Flash 5 or later.

Example

Key.LEFT

Syntax
Key.LEFT

Arguments

None.

Description

Property; constant associated with the keycode value for the left arrow key (37).
Chapter 6228

Player

Flash 5 or later.

Key.PGDN
Syntax
Key.PGDN

Arguments

None.

Description

Property; constant associated with the keycode value for the page down key (34).

Player

Flash 5 or later.

Key.PGUP
Syntax
Key.PGUP

Arguments

None.

Description

Property; constant associated with the keycode value for the page up key (33).

Player

Flash 5 or later.

Key.RIGHT
Syntax
Key.RIGHT

Arguments

None.

Description

Property; constant associated with the keycode value for the right arrow key (39).

Player

Flash 5 or later.
ActionScript Dictionary 229

Key.SHIFT
Syntax
Key.SHIFT

Arguments

None.

Description

Property; constant associated with the keycode value for the shift key (16).

Player

Flash 5 or later.

Key.SPACE
Syntax
Key.SPACE

Arguments

None.

Description

Property; constant associated with the keycode value for the space bar (32).

Player

Flash 5 or later.

Key.TAB
Syntax
Key.TAB

Arguments

None.

Description

Property; constant associated with the keycode value for the tab key (9).

Player

Flash 5 or later.

Key.UP
Syntax
Key.UP

Arguments

None.
Chapter 6230

Description

Property; constant associated with the keycode value for the up arrow key (38).

Player

Flash 5 or later.

le (less than or equal to - string version)
Syntax
expression1 le expression2

Arguments

expression1,expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares expression1 to expression2 and returns
true if expression1 is less than or equal to expression2; otherwise, returns
false.

Player

Flash 4 or later. This operator has been deprecated in Flash 5; use of the new
symbol <= less than operator is recommended.

See also

<=(less than or equal to)

length
Syntax
length(expression);
length(variable);

Arguments

expression Any string.

variable The name of a variable.

Description

String function; returns the length of the specified string or variable name.

Player

Flash 4 or later.This function, along with all of the String functions have been
deprecated in Flash 5. It is recommended that you use the methods and length
property of the String object to perform the same operations.

Example

The following example returns the value of the string Hello:

length("Hello")
ActionScript Dictionary 231

The result is 5.

loadMovie
Syntax
loadMovie (url, [,location, variables]]);

Arguments

url An absolute or relative URL for the SWF file to load. The URL must be in
the same subdomain as the URL where the movie currently resides.

location An optional argument specifying a level or target movie clip into
which the movie is loaded.The loaded movie inherits the position, rotation, and
scale properties of the targeted movie clip.

variables An optional argument specifying a method for sending variables
associated with the movie to load. If there are no variables, leave this argument
blank; otherwise, specify whether to load variables using a GET or POST method.
GET appends the variables to the end of the URL, and is used for small numbers of
variables. POST sends the variables in a separate HTTP header and is used for long
strings of variables.

Description

Action; plays additional movies without closing the Flash Player. Normally, the
Flash Player displays a single Flash Player movie (SWF file) and then closes. The
loadMovie action lets you display several movies at once or switch between
movies without loading another HTML document. The unloadMovie action
removes a movie that loadMovie previously loaded.

Player

Flash 3 or later.

Example

This loadMovie statement is attached to a navigation button labeled Products.
There is an invisible movie clip on the Stage with the instance name dropZone.
The loadMovie action uses this movie clip as the target parameter to load the
products in the SWF file, into the correct position on the stage.

on(release) {
 loadMovie("products.swf",_root.dropZone);
}

See Also
unloadMovie

loadVariables
Syntax
loadVariables (url, ,location [, variables]);
Chapter 6232

Arguments

url An absolute or relative URL where the variables are located. The host for
the URL must be in the same subdomain as the movie when accessed using a web
browser.

location A level or target to receive the variables. In the Flash Player, movie
files are assigned a number according to the order in which they were loaded. The
first movie loads into the bottom level (level 0). Inside the loadMovie action, you
must specify a level number for each successive movie. This argument is optional.

variables An optional argument specifying a method for sending variables. If
there are no variables, leave this argument blank; otherwise, specify whether to
load variables using a GET or POST method. GET appends the variables to the end
of the URL, and is used for small numbers of variables. POST sends the variables in
a separate HTTP header and is used for long strings of variables.

Description

Action; reads data from an external file, such as a text file or text generated by a
CGI script, Active Server Pages (ASP), or PHP, and sets the values for variables in
a movie or movie clip.

The text at the specified URL must be in the standard MIME format
application/x-www-urlformencoded (a standard format used by CGI scripts).
The movie and the variables to be loaded must reside at the same subdomain.
Any number of variables can be specified. For example, the phrase bleow defines
several variables:

company=Macromedia&address=600+Townsend&city=San+Francisco&zip=94
103

Player

Flash 4 or later.

Example

This example loads information from a text file into text fields in the main
Timeline (level 0). The variable names of the text fields must match the variable
names in the data.txt file.

on(release) {
 loadVariables("data.txt", 0);
}

See Also
getURL

lt (less than - string version)
Syntax
expression1 lt expression2
ActionScript Dictionary 233

Arguments

expression1,expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares expression1 to expression2 and returns
true if expression1 is less than expression2; otherwise, returns false.

Player

Flash 4 or later. This operator has been deprecated in Flash 5; use of the new
symbol < less than operator is recommended.

See also

<(less than)

Math
The Math object is a top-level object that you can access without using a
constructor.

Use the methods and properties of this object to access and manipulate
mathematical constants and functions. All of the properties and methods of the
Math object are static, and must be called using the syntax
Math.method(argument) or Math.constant. In ActionScript, constants are
defined with the maximum precision of double-precsion IEEE-754 floating point
numbers.

The Math object is fully supported in the Flash 5 Player. In the Flash 4 Player,
methods of the Math object work, but they are emulated using approximations
and may not be as accurate as the non-emulated math functions supported by the
Flash 5 player.

Several of the Math object methods take the radian of an angle as an argument.
You can use the equation below to calculate radian values, or simply pass the
equation (entering a value for degrees) for the radian argument.

Calculates a radian value:

radian = PI/180 * degree
The following is an example of passing the equation as an argument to calculate
the sine of a 45 degree angle:

Math.SIN(PI/180 * 45) is the same as Math.SIN(.7854)

Method summary for the Math object

Method Description

abs(); Computes an absolute value.

acos(); Computes an arc cosine.
Chapter 6234

Property summary for the Math object

All of the properties for the Math object are constants.

asin(); Computes an arc sine.

atan(); Computes an arc tangent.

atan2(); Computes an angle from the x-axis to the point.

ceil(); Rounds a number up to the nearest integer.

cos(); Computes a cosine.

exp(); Computes an exponential value.

floor(); Rounds a number down to the nearest integer.

log(); Computes a natural logarithm.

max(); Returns the larger of the two integers .

min(); Returns the smaller of the two integers.

pow(x,y); Computes x raised to the power of the y .

round(); Rounds to the nearest integer.

sin(); Computes a sine.

sqrt(x); Computes a square root.

tan(x); Computes a tangent.

Property Description

E; Euler's constant and the base of natural logarithms (approximately
2.718).

LN10; The natural logarithm of 10 (approximately 2.302).

LN2; The natural logarithm of 2 (approximately 0.693).

LOG2E; The base 2 logarithm of e (approximately 1.442).

LOG10E; The base 10 logarithm of e (approximately 0.434).

PI; The ratio of the circumference of a circle to its diameter,
(approximately 3.14159).

Method Description
ActionScript Dictionary 235

Math.abs
Syntax
Math.abs(x);

Arguments

x Any number.

Description

Method; computes and returns an absolute value for the number specified by the
argument x.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.acos
Syntax
Math.acos(x);

Arguments

x A number from -1.0 to 1.0.

Description

Method; computes and returns the arc cosine of the number specified in the
argument x, in radians.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.asin
Syntax
Math.asin(x);

Arguments

x A number from -1.0 to 1.0.

SQRT1_2; The reciprocal of the square root of 1/2 (approximately 0.707).

SQRT2; The square root of 2 (approximately 1.414).

Property Description
Chapter 6236

Description

Method; computes and returns the arc sine for the number specified in the
argument x, in radians.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.atan
Syntax
Math.atan(x);

Arguments

x Any number.

Description

Method; computes and returns the arc tangent for the number specified in the
argument x. The return value is between negative pi divided by 2, and positive pi
divided by 2.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.atan2
Syntax
Math.atan2(y, x);

Arguments

x A number specifying the x coordinate of the point.

y A number specifying the y coordinate of the point.

Description

Method; computes and returns the arc tangent of y/x in radians. The return value
represents the angle opposite the right angle of a right triangle, where x is the
adjacent side length and y is the opposite side length.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.
ActionScript Dictionary 237

Math.ceil
Syntax
Math.ceil(x);

Arguments

x A number or expression.

Description

Method; returns the ceiling of the specified number or expression. The ceiling of a
number is the closest integer that is greater than or equal to the number.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.cos
Syntax
Math.cos(x);

Arguments

x An angle measured in radians.

Description

Method; returns the cosine(a value from -1.0 to 1.0) of the angle specified by the
argument x. The angle x must be specified in radians. Use the information
outlined in the introduction to the Math object to calculate a radian.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Example

Math.E
Syntax
Math.E

Arguments

None.

Description

Constant; a mathematical constant for the base of natural logarithms, expressed as
e. The approximate value of e is 2.71828.
Chapter 6238

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.exp
Syntax
Math.exp(x);

Arguments

x The exponent; a number or expression.

Description

Method; returns the value of the base of the natural logarithm (e), to the power of
the exponent specified in the argument x. The constant Math.E can provide the
value of e.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.floor
Syntax
Math.floor(x);

Arguments

x A number or expression.

Description

Method; returns the floor of the number or expression specified in the argument
x. The floor is the closest integer that is less than or equal to the specified number
or expression.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Example

The following returns a value of 12.

Math.floor(12.5);
ActionScript Dictionary 239

Math.log
Syntax
Math.log(x);

Arguments

x A number or expression with a value greater than 0.

Description

Method; returns the natural logarithm of the argument x.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.LOG2E
Syntax
Math.LOG2E

Arguments

None.

Description

Constant; a mathematical constant for the base-2 logarithm of the constant e
(Math.E), expressed as loge2, with an approximate value of
1.442695040888963387.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.LOG10E
Syntax
Math.LOG10E

Arguments

None.

Description

Constant; a mathematical constant for the base-10 logarithm of the constant e
(Math.E), expressed as log10e, with an approximate value of
0.43429448190325181667.
Chapter 6240

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.LN2
Syntax
Math.LN2

Arguments

None.

Description

Constant; a mathematical constant for the natural logarithm of 2, expressed as
loge2, with an approximate value of 0.69314718055994528623.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.LN10
Syntax
Math.LN10

Arguments

None.

Description

Constant; a mathematical constant for the natural logarithm of 10, expressed as
loge10, with an approximate value of 2.3025850929940459011.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.max
Syntax
Math.max(x , y);

Arguments

x A number or expression.
ActionScript Dictionary 241

y A number or expression.

Description

Method; evaluates x and y and returns the larger value.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.min
Syntax
Math.min(x , y);

Arguments

x A number or expression.

y A number or expression.

Description

Method; evaluates x and y and returns the smaller value.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.PI
Syntax
Math.PI

Arguments

None.

Description

Constant; a mathematical constant for the ratio of the circumference of a circle to
its diameter, expressed as pi, with a value of 3.14159265358979

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.
Chapter 6242

Math.pow
Syntax
Math.pow(x , y);

Arguments

x A number to be raised to a power.

y A number specifying a power the argument x is raised to.

Description

Method; computes and returns x to the power of y, xy.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.round
Syntax
Math.round(x);

Arguments

x Any number.

Description

Method; rounds the value of the argument x up or down to the nearest integer
and returns the value.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.sin
Syntax
Math.sin(x);

Arguments

x An angle measured in radians.

Description

Method; computes and returns the sine of the specified angle, in radians. Use the
information outlined in the introduction to the Math object to calculate a radian.
ActionScript Dictionary 243

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.sqrt
Syntax
Math.sqrt(x);

Arguments

x Any number or expression greater than or equal to 0.

Description

Method; computes and returns the square root of the specified number.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.SQRT1_2
Syntax
Math.SQRT1_2

Arguments

None.

Description

Constant; a mathematical constant for the reciprocal of the square root of 1/2,
with an approximate value of 0.707106781186.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.SQRT2
Syntax
Math.SQRT2

Arguments

None.
Chapter 6244

Description

Constant; a mathematical constant for the the square root of 2, expressed as , with
an approximate value of 1.414213562373.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

Math.tan
Syntax
Math.tan(x);

Arguments

x An angle measured in radians.

Description

Method; computes and returns the tangent of the specified angle. Use the
information outlined in the introduction to the Math object to calculate a radian.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
ojbect are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by the Flash 5 player.

maxscroll
Syntax
variable_name.maxscroll = x

Arguments

variable_name The name of a variable associated with a text field.

x The line number that is the maximum value allowed for the scroll property,
based on the height of the text field. This is a read-only value set by Flash.

Description

Property; a read-only property that works with the scroll property to control the
display of information in a text field. This property can be retreived, but not
modified.

Player

Flash 4 or later.

See also
scroll
ActionScript Dictionary 245

mbchr
Syntax
mbchr(number);

Arguments

number The number to convert to a multibyte character.

Description

String function; converts an ASCII code number to a multibyte character.

Player

Flash 4 or later. This function has been deprecated in Flash 5, and use of
String.fromCharCode is encouraged.

See also

String.fromCharCode

mblength
Syntax
mblength(string);

Arguments

string A string.

Description

String function; returns the length of the multibyte character string.

Player

Flash 4 or later. This function has been deprecated in Flash 5, and use of the
String object and methods is recommended.

mbord
Syntax
mbord(character);

Arguments

character The character to convert to a multibyte number.

Description

String function; converts the specifed character to a multibyte number.

Player

Flash 4 or later. This function has been deprecated in Flash 5, and use of the
String.charCodeAt method is recommended.

See also

String.charCodeAt
Chapter 6246

mbsubstring
Syntax
mbsubstring(value, index, count);

Arguments

value The multibyte string from which to extract a new multibyte string.

index The number of the first character to extract.

count The number of characters to include in the extracted string, not
including the index character.

Description

String function; extracts a new multibyte character string from a multibyte
character string.

Player

Flash 4 or later. This function is deprecated in Flash 5. Use of the string.substr
method is recommended.

See also
String.substr

Mouse object
Use the methods of the Mouse object to hide and show the cursor in the movie.
The cursor in a movie is visible by default. You can hide the cursor so that you can
create a custom cursor. A custom cursor is a movie clip.

Mouse method summary

Syntax
Mouse.hide();
Mouse.show();

Example

Method Description

hide() Hides the cursor in the movie.

show() Displays the cursor in the movie.
ActionScript Dictionary 247

The following code, attached to a movie clip on the main Timeline, hides the
standard cursor and sets the x and y positions of the customCursor movie clip
instance to the x and y mouse positions in the main Timeline:

onClipEvent(enterFrame){
Mouse.hide();
customCursorMC_x = _root._xmouse;
customCursorMC_y = _root._ymouse;

}

See also

_xmouse, _ymouse

MovieClipobject
The methods for the Movieclip object allow you to specify many of the standard
actions that can be specified for a Flash moive, as well as provide some additional
functionality that is not available using the standard actions listed in the Actions
panel. You do not need to use a constructor method in order to call the methods
of the MovieClip object, instead you reference movie clip instances by name,
using the following syntax:

anyMovieClip.play();
anyMovieClip.gotoAndPlay(3);

Movie Clip object method summary

Method Description

attachMovie(); Attaches a movie in the library.

duplicateMovieClip(); Duplicates the specified movie clip..

getBounds(); Returns the bounds of the specified movie clip.

getBytesLoaded(); Returns the number of bytes loaded for the specified
movie clip.

getBytesTotal; Returns the size of the movie clip in bytes.

getURL(); Retreives a document from a URL.

globalToLocal(); Converts point object from stage coordinates to local
coordinates of the specified movie clip.

gotoAndPlay(); Sends the playhead to a specific frame in the movie cliip
and plays the movie.

gotoAndStop(); Sends the playhead to a specific frame in the movie clip
and stops the movie.

hitTest(); Returns true if bounding box of the specified movie clip
intersects the bounding box of the target movie clip.
Chapter 6248

MovieClip.attachMovie

Syntax
anyMovieclip.attachMovie(idName, newName, depth);

Arguments

idName The name of the movie in the library to attach.

newname A name for the new instance of the duplicated movie clip. This is the
name entered for the identifier in the Symbol Linkage Properties dialog box. Each
duplicated movie clip must have a unique instance name.

depth An integer specifying the depth level (z-order) where the movie is placed.

Description

Method; creates a new instance of a movie in the library and attaches it to the
current movie.

Player

Flash 5or later.

loadMovie(); Loads the specified movie into the movie clip.

loadVariables(); Loads variables from a URL or other location into the
movie clip

localToGlobal(); Converts a point object from the local coordinates of the
movieClip to the global stage coordinates.

nextFrame(); Sends the playhead to the nextof the movie clip.

play(); Plays the specified movie movie clip.

prevFrame(); Sends the playhead to the previous frame of the movie
clip.

removeMovieclip(); Removes the movie clip from the Timeline, if it was created
with a duplicateMovieClip action or method.

startDrag(); Specifies a movie clip as draggable and begins dragging
the movie clip.

stop(); Stops the currently playing movie.

stopDrag(); Stops the dragging of any movie clip that is being dragged.

swapDepths(); Swaps the depth level of specified movie with the movie at
a specific depth level.

unloadMovie(); Removes a movie loaded with loadMovie.

Method Description
ActionScript Dictionary 249

Example

MovieClip.duplicateMovieClip

Syntax
anyMovieClip.duplicateMovieClip(newName, depth);

Arguments

newname The name for the new instance of the duplicated movie clip. This is
the same as the name entered for the identifier in the Symbol Linkage Properties
dialog box. Each duplicated movie clip must have a unique instance name.

depth A number specifying the z-order or level where the movie specified by is
to be placed.

Description

Method; creates an instance of the specified movie clip while the movie is playing.
Duplicated movie clips always start playing at frame 1, no matter what frame the
original movie clip is on when the duplicateMovieClip method is called. Movie
clips added with duplicateMovieClip can be deleted with removeMovieClip.

Player

Flash 5 or later.

See also
MovieClip.removeMovieClip

MovieClip.getBounds
Syntax
anyMovieClip.getBounds(targetCoordinateSpace);

Arguments

targetCoordinateSpace The target path of the Timeline whose coordinate
space you want to use as a reference point.

Description

Methods; returns the minumum and maximum x and y coordinate values of the
movieClip, for the target coordinate space specified in the argument.. The return
object will contain the properties {xMin, xMax, yMin, yMax}.

Player

Flash 5 or later.
Chapter 6250

Example

The following example uses getBounds to retreive the bounding box of the
specified movie clip in the coordinate space of the main movie.

myMovieClip.getBounds(._root);

MovieClip.getBytesLoaded
Syntax
anyMovieClip.getBytesLoaded();

Arguments

None.

Description

Method; returns the number of bytes loaded (streamed) for the specified movie
clip object. Because internal movie clips load automatically, the return result for
this method and MovieClip.getBytesTotal will be the same if the specified
movie clip object references an internal movie clip.

Player

Flash 5 or later.

MovieClip.getBytesTotal
Syntax
anyMovieClip.getBytesTotal();

Arguments

None.

Description

Method; returns the size, in bytes, of the specifed movie clip object. For movie
clips that are external, (the root movie or a movie clip that is being loaded into a
target or a level) the return value is the size of the SWF file.

Player

Flash 5 or later.

MovieClip.getURL
Syntax
anyMovieClip.getURL(URL, [,window, method]]);

Arguments

URL The URL from which to obtain the document.
ActionScript Dictionary 251

window An optional argument specifying the name, frame, or expression
specifying the window or HTML frame that the document is loaded into. You can
also use one of the following reserved target names: _self specifies the current
frame in the current window, _blank specifies a new window, _parent specifies
the parent of the current frame, _top specifies the top-level frame in the current
window.

variables An optional argument specifying a method for sending variables
associated with the movie to load. If there are no variables, leave this argument
blank; otherwise, specify whether to load variables using a GET or POST method.
GET appends the variables to the end of the URL, and is used for small numbers of
variables. POST sends the variables in a separate HTTP header and is used for long
strings of variables.

Description

Method; loads a document from the specified URL into thespecified window. The
getURL method can also be used to pass variables to another application defined at
the URL using a GET or POST method.

Player

Flash 5 or later.

Example

MovieClip.globalToLocal
Syntax
anyMovieClip.globalToLocal(point);

Arguments

point The name or identifier of object created with the generic object Object
specifying the x and y coordinates as properties.

Description

Method; converts the point object from Stage (global) coordinates to the movie
clips (local) coordinates.

Player

Flash 5 or later.

Example

The following example converts the x and y coordinates of the point object from
global to local.

onClipEvent(mouseMove) {
point = new object();
point.x = _root._xmouse;
point.y = _root._ymouse;
globalToLocal(point);
_root.out = _xmouse + " === " + _ymouse;
Chapter 6252

_root.out2 = point.x + " === " + point.y;
updateAfterEvent();
}

MovieClip.gotoAndPlay
Syntax
anyMovieClip.gotoAndPlay(frame);

Arguments

frame The frame number to which the playhead will be sent.

Description

Method; starts playing the movie at the specified frame.

Player

Flash 2 or later.

Example

MovieClip.gotoAndStop
Syntax
anyMovieClip.gotoAndStop(frame);

Arguments

frame The frame number to which the playhead will be sent.

Description

Method; stops the movie playing at the specified frame.

Player

Flash 2 or later.

Example

MovieClip.hitTest
Syntax
anyMovieClip.hitTest(x, y, shapeFlag);
anyMovieClip.hitTest(target);

Arguments

x The x coordinate of the hit area on the Stage.

y The y coordinate of the hit area on the Stage.

The x and y coordinates are defined in the global coordinate space.
ActionScript Dictionary 253

target The target path of the hit area that may intersect or overlap with the
specified movieClip object. The target is usually a button or text entry field.

shapeFlag A Boolean value specifying whether to evaluate the entire shape of
the specified movieClip object (true), or just the bounding box (false). This
argument can only specified if the the hit area is identified using x and y
coordinate arguments.

Description

Method; evaluates the specified movieClip object checking to see if it overlaps or
interspects with the hit area identified by the target or x and y coordinate
arguments.

Usage 1 compares the x and y coordinates to the shape or bou nding box of the
specified movieClip object, depending on the shapeFlag setting. If shapeFlag is
set to true, only the area actually occupied by the movieClip object on the stage is
evaluated, and if x and y overlap with any portion, a value of true is returned.
This is useful for determining if the movie clip is within a specified hit, or hotspot,
area.

Usage 2 evaluates the bounding boxes of the target and specified movieClip
object, and returns true if they overlap or intersect at any point.

Player

Flash 5 or later.

Example

The following example uses hitTest with the x_mouse and y_mouse properties
to determine whether the mouse is over the target’s bounding box.

if (hitTest(_root._xmouse, _root._ymouse, false));

The following example uses hitTest to determine if the movie clip ball overlaps
or intersects with the movie clip square.

if(_root.ball, hittest(_root.square)){
trace("ball intersects square");
}

MovieClip.loadMovie
Syntax
anyMovieClip.loadMovie(url, [method]]);

Arguments

url The absolute or relative URL for the SWF file to load.
Chapter 6254

variables An optional argument specifying a method for sending variables
associated with the movie to load. If there are no variables, leave this argument
blank; otherwise, specify whether to load variables using a GET or POST method.
GET appends the variables to the end of the URL, and is used for small numbers of
variables. POST sends the variables in a separate HTTP header and is used for long
strings of variables.

Description

Method; plays additional movies without closing the Flash Player. Use the
loadMovie method to replace the specified movie clip. Use unloadMovie to
remove movies added with the loadMovie method.

Player

Flash 5 or later.

Example

MovieClip.loadVariables
Syntax
anyMovieClip.loadVariables(url, variables);

Arguments

url The absolute or relative URL for the external file. The host for the URL
must be in the same subdomain as the movie clip.

variables The method for retrieving the variables. GET appends the variables
to the end of the URL, and is used for small numbers of variables. POST sends the
variables in a separate HTTP header and is used for long strings of variables.

Description

Method; reads data from an external file and sets the values for variables in a
movie or movie clip. The external file can be a text file generated by a CGI script,
Active Server Pages (ASP), or PHP, andcan contain any number of variables.

This method requires that the text at the URL be in the standard MIME format:
application/x-www-urlformencoded (CGI script format).

Player

Flash 4 or later.

Example

MovieClip.localToGlobal
Syntax
anyMovieClip.localToGlobal(point);
ActionScript Dictionary 255

Arguments

point The name or identifier of object created with the generic object Object
specifying the x and y coordinates as properties.

Description

Method; converts the point object from the target movie clips (local)
coordinates, to Stage (global) coordinates.

Player

Flash 5 or later.

Example

The following example converts x and y coordinates of the object ‘point,’ from
local to global. The local x and y coordinates are specified using xmouse and
ymouse to retreive the x and y coordinates of the mouse position.

onClipEvent(mouseMove) {
point = new object();
point.x = _xmouse;
point.y = _ymouse;
_root.out3 = point.x + " === " + point.y;
_root.out = _root._xmouse + " === " + _root._ymouse;
localToGlobal(point);
_root.out2 = point.x + " === " + point.y;
updateAfterEvent();
}

MovieClip.nextFrame
Syntax
anyMovieClip.nextFrame();

Arguments

None.

Description

Method; sends the playhead to the next frame of the movie clip. t

Player

Flash 2 or later.

Example

MovieClip.play
Syntax
anyMovieClip.play();
Chapter 6256

Arguments

None.

Description

Method; plays the movie clip.

Player

Flash 5 or later.

Example

MovieClip.prevFrame
Syntax
anyMovieClip.prevFrame(framenumber);

Arguments

Description

Method; sends the playhead to the frame that preceeds the specified frame and
stops it.

Player

Flash 5 or later.

Example

MovieClip.removeMovieClip
Syntax
anyMovieClip.removeMovieClip();

Arguments

None.

Description

Method; removes a movie clip instance created with duplicateMovieclip.

Player

Flash 5 or later.

Example

MovieClip.startDrag
Syntax
anyMovieClip.startDrag();
ActionScript Dictionary 257

Arguments

lock A Boolean value specifying whether the draggable movie clip is locked to
the center of the mouse position (true), or locked to the point where the user first
clicked on the movie clip (false). This argument is optional.

left, top, right, bottom Together these arguments specify a constraint
rectangle that the movie clip cannot be dragged out of. These arguments are
optional.

Description

Method; allows the user to drag the specified movie clip. The movie remains
draggable until explicitly stopped by calling the stopDrag method, or until
another movie clip is made draggable. Only one movie clip is draggable at a time.

Player

Flash 5 or later.

Example

MovieClip.stop
Syntax
anyMovieClip.stop();

Arguments

None.

Description

Method; stops the movie clip currently playing.

Player

Flash 5 or later.

Example

MovieClip.stopDrag
Syntax
anyMovieClip.stopDrag();

Arguments

None.

Description

Method; ends a drag action implemented with the startDrag method. A movie
remains draggable until a stopDrag method is added, or until another movie
becomes draggable. Only one movie clip is draggable at a time.

Player

Flash 5 or later.
Chapter 6258

Example

MovieClip.swapDepths
Syntax
anyMovieClip.swapDepths(depth);
anyMovieClip.swapDepths(target);

Arguments

target The movie clip that is being replaced by the specified movie
(anyMovieClip). Both movies ust have the same parent movie clip.

depth A number specifying the z-order or level where the movie specified by is
to be placed.

Description

Method; swaps the stacking order, or depth level of the specified movie clip object
(anyMovieClip) with the movie specified in the target argument, or currently
occupying the depth level specified in the argument. Both movies must have the
same parent movie clip.

If the argument specified is target, this action has the same effect as
setProperty, and will stop a tween.

Player

Flash 5 or later.

Example

MovieClip.unloadMovie
Syntax
anyMovieClip.unloadMovie();

Arguments

None.

Description

Method; removes a movie clip loaded with the loadMovie method.

Player

Flash 5 or later.
ActionScript Dictionary 259

Example

_name
Syntax

instancename._name

setProperty("movieclip", _name, "string");

Arguments

movieclip The instance name of the movie clip.

string Text for the name of the movie

Description

Property; specifies a name for the movie clip instance.

Player

Flash 4 or later.

NaN
Syntax
NaN

Arguments

None.

Description

Top-level variable; a predefined variable with the IEEE-754 value for NaN (Not a
number).

Player

Flash 5 or later.

ne (not equal - string version)
Syntax
expression1 ne expression2

Arguments

expression1, expression2 Numbers, strings, or variables.

Description

Comparison operator; compares expression1 to expression2 and returns true
if expression1 is not equal to expression2; otherwise, returns false.
Chapter 6260

Player

Flash 4 or later. This operator has been deprecated in Flash 5; use of the new !=
symbol not equal operator is recommended.

See also

!= (not equal)

newline
Syntax
newline;

Arguments

None.

Description

Constant; inserts a carriage return character ({) inserting a blank line into the
ActionScript code. Use newline to make space for information that is retrieved by
a function or action in your code..

Player

Flash 4 or later.

nextFrame
Syntax
nextFrame(frameNumber);

Arguments

Description

Action; sends the playhead to the specified frame, and initiates an action on the
very next frame.

Player

Flash 2 or later.

Example

When the user clicks a button that a nextFrame action is assgined to, the
playhead is sent to the frame 5, but the action (if any) begins with the next frame,
which is frame 6.

on (release) {
 nextFrame(5);
}

ActionScript Dictionary 261

nextScene
Syntax
nextScene(sceneNumber);

Arguments

Description

Action; sends the playhead to frame one of the next scene and stops it.

Player

Flash 2 or later.

Example

This action is assigned to a button that, when pressed and released, sends the
playhead to frame one of the next scene.

on(release) {
 nextScene();
}

not
Syntax
not expression

Arguments

expression Any variable or other expression that converts to a Boolean value.

Description

Operator; performs a logical NOT operation in the Flash 4 Player.

Player

Flash 4 or later. This operator has been deprecated in Flash 5 ,and users are
encouraged to make use of the new ! symbol (logical NOT) operator.

See Also
! (logical NOT) operator.

null
Syntax
null

Arguments

None.
Chapter 6262

Description

Keyword; a special value that can be assigned to variables, or returned by a
function if no data was provided. You can use null to represent values that are
missing or do not have a defined data type.

Player

Flash 5 or later.

Example

In a numeric context, null evaluates to 0. Equality tests can be performed with
null. In this statement, a binary tree node has no left child, so the field for its left
child could be set to null.

if (tree.left == null) {
 tree.left = new TreeNode();
}

Number
Syntax
Number(expression);

Arguments

expression The sting, Boolean, or other expression to convert to a number.

Description

Function; converts the argument x to a number and returns a value as follows:

If x is a number, return value is x.

If x is a boolean, the return value is 1 if x is true, 0 if x is false.

If x is a string, the function attempts to parse x as a decimal number with an
optional trailing exponent, i.e. 1.57505e-3.

If x is undefined, the return value is 0.

This function is used to convert Flash 4 files containing deprecated operators that
are imported into the Flash 5 authoring environment. See the & operator for more
information.

Player

Flash 4 or later.

Number
The Number object is a simple wrapper object for the number data type, which
means that you can manipulate primitive numeric values using the methods and
properties associated with the Number object. The functionality provided by this
object is identical to that of the JavaScript Number object.
ActionScript Dictionary 263

You must use the Number constructor when calling the methods of the Number
object, but you do not need to use the constructor when calling the properties of
the Number object. The following examples specify the syntax for calling the
methods and properties of the Number object:

This is an example of calling the toString method of the Number object:

myNumber = new Number(1234);
myNumber.toString();

Returns a string containing the binary representation of the number 1234.

This is an example of calling the MIN_VALUE property (also called a constant) of
the Number object:

smallest = Number.MIN_VALUE

Method summary for Number object

Property summary for the Number object

Constructor for the Num ber object

Syntax
myNumber = new Number(value);

Arguments

value The numeric value of the Number object being created, or a value to be
converted to a number.

Method Description

toString(); Returns the string representation of a Number object.

Property Description

MAX_VALUE Constant representing the largest representable number
(double-precision IEEE-754). This number is
approximately 1.7976931348623158e+308.

MIN_VALUE Constant representing the smallest representable number
(double-precision IEEE-754). This number is
approximately 5e-324..

NaN Constant representing the value for Not A Number (NaN)..

NEGATIVE_INFINITY Constant representing the value for negative infinity.

POSITIVE_INFINITY Constant representing the value for positive infinity. This
value is the same as the global variable Infinity.
Chapter 6264

Description

Constructor; creates a new Number object. You must use the Number constructor
when using the toString and valueOf methods of the Number object. You do
not use a constructor when using the properties of the Number object. The new
Number() constructor is primarily used as a placeholder. An instance of the
Number object is not the same as the Number() function that converts an
argument to a primative value.

Player

Flash 5 or later.

Example

The following code constructs new Number objects.

n1 = new Number(3.4);
n2 = new Number(-10);

Number.toString
Syntax
myNumber.toString(radix);

Arguments

radix Specifies the numeric base (from 2 to 36) to use for the number-to-string
conversion. If you do not specify the radix argument, the default value is 10.

Description

Method; returns the string representation of the specified Number object
(myNumber).

Player

Flash 5 or later.

Example

The following example uses the Number.toString method, specifying 2 for the
radix argument:

myNumber = new Number (1000);
(1000).toString(2);

Returns a string containing the binary representation of the number 1000.

Number.valueOf
Syntax
myNumber.valueOf();

Arguments

None.
ActionScript Dictionary 265

Description

Method; returns the primitive value type of the specified Number object, and
converts the Number wrapper object to the primative value type.

Player

Flash 5 or later.

Number.MAX_VALUE
Syntax
Number.MAX_VALUE

Arguments

None.

Description

Property; the largest representable number (double-precision IEEE-754). This
number is approximately 1.79E+308.

Player

Flash 5 or later.

Number.MIN_VALUE
Syntax
Number.MIN_VALUE

Arguments

None.

Description

Property; the smallest representable number (double-precision IEEE-754). This
number is approximately 5e-324.

Player

Flash 5 or later.

Number.NaN
Syntax
Number.NaN

Arguments

None.

Description

Property; the IEEE-754 value representing Not A Number (NaN).
Chapter 6266

Player

Flash 5 or later.

Number.NEGATIVE_INFINITY
Syntax
Number.NEGATIVE_INFINITY

Arguments

None.

Description

Property; returns the IEEE-754 value representing negative infinity. This value is
the same as the global variable Infinity.

Negative infiinity is a special numeric value that is returned when a mathematical
operation or function returns a negative value larger than can be represented.

Player

Flash 5 or later.

Number.POSITIVE_INFINITY
Syntax
Number.POSITIVE_INFINITY

Arguments

None.

Description

Property; returns the IEEE-754 value representing positive infinity. This value is
the same as the global variable Infinity.

Positive infiinity is a special numeric value that is returned when a mathematical
operation or function returns a value larger than can be represented.

Player

Flash 5 or later.

Object object
The generic Object object is at the root of the ActionScript class hierarchy. The
functionality of the genericObject object is a small subset of that provided by the
JavaScript Object object.

The generic object Object requires the Flash 5 player.
ActionScript Dictionary 267

Method summary for the Object object

Constructor for the Object o bject
Syntax
new Object();
new Object(value);

Arguments

value A number, boolean, or string to be converted to an object. This argument
is optional. If you do not specify value, the constructor creates a new object with
no defined properties.

Description

Constructor; creates an new Object object.

Player

Flash 5 or later.

See also

Sound.setTransform, Color.setTransform

Object.toString
Syntax
myObject.toString();

Arguments

None.

Description

Method; converts the specified object to a string, and returns it.

Player

Flash 5 or later.

Object.valueOf
Syntax
myObject.valueOf();

Method Description

toString(); Converts the specified object to a string, and returns it.

valueOf(); Returns the primative value of the specified Object.
Chapter 6268

Arguments

None.

Description

Method; returns the primitive value of the specified Object. If the object does not
have a primitive value, the object itself is returned.

Player

Flash 5 or later.

onClipEvent
Syntax
onClipEvent(movieEvent){
...
}

Arguments

A movieEvent is a trigger event that executes actions that are assigned to a movie
clip instance. Any of the following values can be specified for the movieEvent
argument.

• load The action is initiated as soon as the movie clip is instantiated and
appears in the Timeline.

• unload The action is initiated in the first frame after the movie clip is
removed from the Timeline. The actions associated with the Unload movie clip
event are processed before actions attached to the affected frame, if any.

• enterFrame The action is initiated as each frame is played, similar to actions
attached to a sprite. The actions associated with the OnEnterFrame movie clip
event are processed after actions attached to the affected frames, if any.

• mouseMove The action is initiated every time the mouse is moved. Use the
_xmouse and _ymouse properties to determine the current mouse position.

• mouseDown The action is initiated if the left mouse button is pressed.

• mouseUp The action is initiated if the left mouse button is released.

• keyDown The action is initiated when a key is pressed. Use the Key.getCode
method to retrieve information about the last key pressed.

• keyUp The action is initiated when a key is released.Use the Key.getCode
method to retreive information about the last key pressed.

• data The action is initiated when data is received in a loadVariables or
loadMovie action. When specified with a loadVariables action, the data
event occurs only once, when the last variable is loaded. When specified with a
loadMovie action, the data event occurs repeatedly, as each section of data is
retreived.
ActionScript Dictionary 269

Description

Handler; triggers actions defined for a specific instance of a movie clip.

Player

Flash 5 or later.

Example

The following statement includes the script from an external file when the movie
clip is loaded and first appears on the Timeline.

onClipEvent(load) {
 #include "myScript.as"
}

The following example of uses onClipEvent with the keyDown movie event. The
keyDown movie event is usually used in conjunction with one or more methods
and properties associated with the Key object. In the script below, key.getCode
is used to find out which key the user has pressed, the returned value is associated
with the RIGHT or LEFT Key object properties, and the movie is directed
accordingly.

onClipEvent(keyDown) {
if (Key.getCode() == Key.RIGHT) {
} _parent.nextFrame();

else if (Key.getCode() == Key.LEFT){
_parent.prevFrame();

}

The following example uses onClipEvent with the mouseMove movie event. The
the xmouse and ymouse properties track theposition of the mouse.

onClipEvent(mouseMove) {
stageX=_root.xmouse;
stageY=_root.ymouse;
}

on(MouseEvent)
Syntax
on(mouseEvent) {
statement;
}

Arguments

statement The instructions to execute when the mouseEvent takes place.

A mouseEvent is one of the following:

• press The mouse button is pressed while the pointer is over the button.
Chapter 6270

• release The mouse button is released while the pointer is over the button.

• releaseOutside The mouse button is released while the pointer is outside
the button.

• rollOver The mouse pointer rolls over the button.

• rollOut The pointer rolls outside of the button area.

• dragOver While the pointer is over the button, the mouse button has been
pressed while, rolled outside the button, and then rolled back over the button.

• dragOut While the pointer is over the button, the mouse button is pressed
and then rolls outside the button area.

• keyPress (“key”) The specified key is pressed. The key portion of the
argument is specified using any of the keycodes listed in the or any of the key
constants listed in the .

Description

Handler; specifies the mouse event, or keypress that trigger an action.

Player

Flash 2 or later.

Example

In the following script, the startDrag action executes when the mouse is pressed
and the conditional script is executed when the mouse is released and the object is
dropped:

on(press) {
 startDrag("rabbi");
}
on(release) {
 if(getproperty("", _droptarget) == target) {
 setProperty ("rabbi", _x, _root.rabbi_x);
 setProperty ("rabbi", _y, _root.rabbi_y);
 } else {
_root.rabbi_x = getProperty("rabbi", _x);
_root.rabbi_y = getProperty("rabbi", _y);
_root.target = "pasture";
 }
 trace(_root.rabbi_y);
 trace(_root.rabbi_x);
 stopDrag();
}

ActionScript Dictionary 271

ord
Syntax
ord(character);

Arguments

character The character to convert to an ASCII code number.

Description

String function; converts characters to ASCII code numbers.

Player

Flash 4 or later. This function has been deprecated in Flash 5, and it is
recommended that you use of the methods and properties of the String object
instead.

_parent
Syntax
_parent.property = x
_parent._parent.property = x

Arguments

property The property being specified for the current and parent movie clip.
Use _parent to specify a relative path.

x The value set for the property. This is an optional argument and may not
need to be set depending on the property.

Description

Property; specifies or returns a reference to the movie clip that contains the
current movie clip. The current movie clip is the movie clip containing the
currently executing script.

Player

Flash 4 or later.

Example

In the following example the movie clip desk is a child of the movie clip
classroom. When the script below executes inside the movie clip desk, the
playhead will jump to frame 10 in the Timeline of the movie clip classroom.

_parent.gotoAndStop(10);

parseFloat
Syntax
parseFloat(string);
Chapter 6272

Arguments

string The string to parse and convert to a floating-point number.

Description

Function; converts a string to a floating-point number. The function parses and
returns the numbers in the string, until the parser reaches a character that is not a
part of the initial number. If the string does not begin with a number that can be
parsed, parseFloat returns NaN or 0. Whitespace preceding valid integers is
ignored, as are trailing non-numeric characters.

Player

Flash 5 or later.

Example

The following exmples ar examples of using parseFloat to evaluate various types
of numbers:

parseFloat("-2") returns -2

parseFloat("2.5") returns 2.5

parseFloat("3.5e6") returns 3.5e6, or 3500000

parseFloat("foobar") returns NaN

parseInt
Syntax
parseInt(expression, radix);

Arguments

expression The string, floating-point number, or other expression to parse and
convert to a integer.

radix An integer representing the radix (base) of the number to parse. Legal
values are from 2 and 36. This argument is optional

Description

Function; converts a string to an integer. If the specified string in the arguments
cannot be converted to a number, the function returns NaN or 0. Integers
beginning with 0 or specifying a radix of 8 are interpreted as octal numbers.
Integers beginning with 0x are interpreted as hexadecimal numbers. White space
preceding valid integers is ignored, as are trailing nonnumeric characters.

Player

Flash 5 or later.

Example

The following examples of use parseInt to evaluate various types of numbers.

parseInt("3.5") returns 3.5
ActionScript Dictionary 273

parseInt("bar") returns NaN

parseInt("4foo") returns 4

Example

Hexadecimal conversion:

parseInt("0x3F8") returns 1016

parseInt("3E8", 16) returns 1000

Binary conversion:

parseInt("1010", 2) returns 10 (the decimal representation of the binary
1010)

Octal number parsing (in this case the octal number is identified by the radix, 8) :

parseInt("777", 8) returns 511 (the decimal represetationof the octal 777)

play
Syntax
play();

Arguments

None.

Description

Action; moves the playhead forward in the Timeline.

Player

Flash 2 or later.

Example

The following code uses an if statement to check the value of a name the user
enters. If the user enters Steve, the play action is called and the playhead moves
forward in the Timeline. If the user enters anythingother than Steve, the movie
does not play and atext field with the variable name alert is displayed.

stop();
if (name = "Steve") {
 play();
} else {
 alert = "You are not Steve!";
}

prevFrame
Syntax
prevFrame(frameNumber);
Chapter 6274

Arguments

Description

Action; sends the playhead to specified frame, and initiates an action from the
frame preceeding the frame specified in the argument.

Player

Flash 2 or later.

Example

When the user clicks a button that a prevFrame action is assgined to, the
playhead is sent to the frame 5, but the action (if any) begins with the previous
frame, which is frame 4.

on(release) {
 prevFrame(5);
}

prevScene
Syntax
prevScene(sceneNumber);

Arguments

Description

Action; sends the playhead to frame one of the previous scene and stops it.

Player

Flash 2 or later.

Example

This action is assigned to a button that, when pressed and released, sends the
playhead to frame one of the previous scene.

on(release) {
 prevScene();
}

See also
nextScene

print
Syntax
print (target, "bmovie");

print (target, "bmax");

print (target, "bframe");
ActionScript Dictionary 275

Arguments

target The instance name of movie clip to print. By default, all of the frames in
the movie are printed. If you wish to print only specific frames in a movie, attach
a #P frame label to those frames in the authoring environment.

bmovie Designates the bounding box of a specific frame as the print area for all
printable frames in the movie. Attach a #b label (in the authoring environment) to
the frame whose bounding box you wish to use as the print area.

bmax Designates a composite of all of the bounding boxes for all printable
frames, as the print area. Specify the bmax argument when the printable frames in
your movie vary in size.

bframe Designates the bounding box in each printable frame as the print area
for that frame. This changes the print area for each frame and scales the objects to
fit the print area. Use bframe if you have objects of different sizes in each frame
and want each object to fill the printed page.

Description

Action; prints the target movie clip according to the specified printer modifier
argument. If you wish to print only specific frames in the target movie, attach a #P
frame label to the frames you want to print.The print action results in higher
quality prints than the printAsBitmap action, however it can not be used to print
movies that use alpha transparencies of special color effects.

By default the print area is determined by the stage size of the loaded movie. The
movie does not inherit the main movie’s stage size. You can control the print area
by specifying the bmovie, bmax, or bframe arguments.

All of the printable elements of a movie must be fully loaded before printing can
begin.

The Flash Player printing feature supports PostScript and non-PostScript printers.
Non-PostScript printers convert vectors to bitmaps.

Player

Flash 5 or later.

Example

The following example will print all of the printable frames in myMovie with the
print area defined by the bounding box of the frame with the #b frame label
attached.

print("myMovie","bmovie");

The following example will print all of the printable frames in myMovie with a
print area defined by the bounding box of each frame.

print("myMovie","bframe");
Chapter 6276

printAsBitmap
Syntax
printAsBitmap(target, "bmovie");

printAsBitmap(target, "bmax");

printAsBitmap(target, "bframe");

Arguments

target The instance name of movie clip to print. By default, all of the frames in
the movie are printed. If you wish to print only specific frames in a movie, attach
a #P frame label to those frames in the authoring environment.

bmovie Designates the bounding box of a specific frame as the print area for all
printable frames in the movie. Attach a #b label (in the authoring environment) to
the frame whose bounding box you wish to use as the print area.

bmax Designates a composite of all of the bounding boxes for all printable
frames, as the print area. Specify the bmax argument when the printable frames in
your movie vary in size.

bframe Designates the bounding box in each printable frame as the print area
for that frame. This changes the print area for each frame and scales the objects to
fit the print area. Use bframe if you have objects of different sizes in each frame
and want each object to fill the printed page.

Description

Action; prints the target movie clip as a bitmap. Use printAsBitmap to print
movies that contains frames with objects that use transparency or color effects.
The printAsBitmap action prints at the highest available resolution of the printer
in order to maintain as much definition and quality as possible. To calculate the
printable file size of a frame designated to print as a bitmap, multiply pixel width
by pixel height by printer resolution.

If your movie does not contain alpha transparencies or color effects it is
recommened that you use the print action for better quality results.

By default the print area is determined by the stage size of the loaded movie. The
movie does not inherit the main movie’s stage size.You can control the print area
by specifying the bmovie, bmax, or bframe arguments.

All of the printable elements of a movie must be fully loaded before printing can
begin.

The Flash Player printing feature supports PostScript and non-PostScript printers.
Non-PostScript printers convert vectors to bitmaps.

Player

Flash 5 or later.

See also

print
ActionScript Dictionary 277

random
Syntax
random();

Arguments

value The highest integer for which random will return a value.

Description

Function; returns a random integer between 0 and the integer specified in the
value argument.

Player

Flash 4. This function is deprecated in Flash 5; it is reccommended that you use
the Math.round method instead.

Example

The following use of random() returns a value of 0, 1, 2, 3, or 4.

random(5);

removeMovieClip
Syntax
removeMovieClip(target);

Arguments

target The target path of the movie clip instance created with
duplicateMovieClip.

Description

Action; deletes a movie clip instance that had been created with
duplicateMovieClip.

Player

Flash 4 or later.

See Also
duplicateMovieClip

return
Syntax
return[expression];

return;

Arguments

expression A type, string, number, array, or object to evaluate and return as a
value of the function. This argument is optional.
Chapter 6278

Description

Action; specifies the value returned by a function. When the return action is
executed, the expression is evaluated and returned as a value of the function.
The return action causes causes the function to stop executing. If the return
statement is used alone, or if Flash does not encounter a return statement during
the looping action, it returns null.

Player

Flash 5 or later.

Example

The following is an example of using return.

function sum(a, b, c){
return a + b + c;
}

_root
Syntax
_root
_root.movieClip

_root.action

Arguments

movieClip The instance name of a movie clip.

action The value set for the property. This is an optional argument and may
not need to be set depending on the property.

Description

Property; specifies or returns a reference to the root movie Timeline. If a movie has
multiple levels, the root movie timeline is on the level containing the curretly
executing script. For example, if a script in level 1 evaluates _root, level 1 is
returned.

Specifying _root is the same as using the slash notaion “/ ” to specify an absolute
path within the current level.

Player

Flash 4 or later.

Example

The following example stops the timeline of the level containing the currently
executing script.

_rootl.stop();

The following example sends the timeline of the current level to frame 3.

_root.gotoAndStop(3);
ActionScript Dictionary 279

_rotation
Syntax

instancename._rotation;

setProperty("movieclip", _rotation = integer);

Arguments

integer The number of degrees to rotate the movie clip.

movieclip The movie clip to rotate.

Description

Property; specifies the rotation of the movie clip in degrees.

Player

Flash 4 or later.

Example

scroll
Syntax
variable_name.scroll = x

Arguments

variable_name the name of a variable associated with a text field.

x The line number of the topmost visible line in the text field. You can specify
this value or use the default value of 1. The Flash Player updates this value as the
user scrolls up and down the text field.

Description

Property; controls the display of information in a text field associated with a
variable. The scroll property defines where the text field begins displaying
content; after you set it, the Flash Player updates it as the user scrolls through the
text field. The scroll property is useful for directing users to a specific paragraph
in a long passage, or creating scrolling text fields. This property can be retreived
and modified.

Player

Flash 4 or later.

See also
maxscroll
Chapter 6280

Selection
The Selection object allows you to set and control the currently focused editable
text field. The currently focused editable text field is the field where the users
cursor is currently placed. Selection span indices are zero-based (where the first
position is 0, the second position is 1, and so on).

There is no constructor method for the Selection object as there can only be one
currently focused field at a time.

Method summary for the Selection object

Selection.getBeginIndex
Syntax
Selection.getBeginIndex();

Arguments

None.

Description

Method; returns index at the beginning of the selection span. If no index exists or
no file currently has the focus, the method returns -1. Selection span indices are
zero-based (where the first position is 0, the second position is 1, and so on).

Player

Flash 5 or later.

Method Description

getBeginIndex(); Returns the index at the beginning of selection span. Returns -1 if
there is no index or currently selected field.

getCaretIndex(); Returns current caret position in the currenly focused selection
span. Returns -1 if there is no caret position or currently focused
selection span.

getEndIndex(); Returns the index at the end of the selection span. Returns -1 if
there is no index or currently selected field.

getFocus(); Returns name of the variable for currently focused editable text
field. Returns null if there is no currently focused editable text
field.

setFocus(); Focuses the editable text field associated with variable specified
in the argument.

setSelection(); Sets beginning and ending indices of the selection span.
ActionScript Dictionary 281

Selection.getCaretIndex
Syntax
Selection.getCaretIndex();

Arguments

None.

Description

Method; returns the index of the blinking cursor position. If there is no blinking
cursor displayed, the method returns -1. Selection span indices are zero-based
(where the first position is 0, the second position is 1, and so on).

Player

Flash 5 or later.

Selection.getEndIndex
Syntax
Selection.getEndIndex();

Arguments

None.

Description

Method; returns the ending indexof the currently focused selection span. If no
index exists, or if there is no currently focused selection span, the method returns
-1. Selection span indices are zero-based (where the first position is 0, the second
position is 1, and so on).

Player

Flash 5 or later.

Selection.getFocus
Syntax
Selection.getFocus();

Arguments

None.

Description

Method; returns the name of the variable of the currently focused editable text
field. If no text field is currently focused, the method returns null.

Player

Flash 5 or later.
Chapter 6282

Example

The following code returns the name of the variable.
_root.anyMovieClip.myTextField.

Selection.setFocus
Syntax
Selection.setFocus(variable);

Arguments

variable A string specifying the name of a variable associated with a text field
in dot or slash notation.

Description

Method; focuses the editable text field associated with the specified variable.

Player

Flash 5 or later.

Selection.setSelection
Syntax
Selection.setSelection(start, end);

Arguments

start The beginning index of the selection span.

end The ending index of the selection span.

Description

Method; sets the selection span of the currently focused text field. The new
selection span will begin at the index specified in the start argument, and end at
the index specified in the end argument. Selection span indices are zero-based
(where the first position is 0, the second position is 1, and so on). This method has
no effect if there is no currently focused text field.

Player

Flash 5 or later.

set
Syntax
variable = expression;
set(variable, expression);
ActionScript Dictionary 283

Arguments

variable The name of the container that holds the value of the expression
argument.

expression The value (or a phrase that can be evaluated to a value) that is
assigned to the variable.

Description

Action; assigns a value to a variable. A variable is a container that holds
information. The container itself is always the same, but the contents can change.
By changing the value of a variable as the movie plays, you can record and save
information about what the user has done, record values that change as the movie
plays, or evaluate whether a condition is true or false.

Variables can hold either numbers or strings of characters. Each movie and movie
clip has its own set of variables, and each variable has its own value independent of
variables in other movies or movie clips.

ActionScript is an untyped language. That means that variables do not have to be
explicitly defined as containing either a number or a string. Flash interprets the
data type as an integer or string accordingly.

ActionScript is an untyped language — that is, you do not have to explicity define
variables as containing either a number or a string, as Flash interprets each variable
independent of variables in other movies or movie clips.

Use the set statement in conjunction with the call action to pass or return
values.

Player

Flash 4 or later.

Example

This example sets a variable called orig_x_pos that stores the original x axis
position of the movie clip ship in order to reset the ship to its starting location
later in the movie.

on(release) {
 set(x_pos, getProperty ("ship", _x));
}

This is equivalent to writing the following:

on(release) {
 orig_x_pos = getProperty ("ship", _x);
}

See Also
var

call
Chapter 6284

setProperty
Syntax
setProperty(target, property, expression);

Arguments

target The path to the instance name of the movie clip whose property is being
set.

property The property to be set.

expression The value to which the property is set.

Description

Action; changes the property of a movie clip as the movie plays.

Player

Flash 4 or later.

Example

This statement sets the _alpha property of a movie clip named star to 30
percent when the button is clicked.

on(release) {
 setProperty("star", _alpha = 30);
}

Sound
The Sound object allows you to set and control sounds in a particular movie clip,
or in the global movie clip if you do not specify a target when creating a new
sound object. You must use the constructor new Sound() to create an instance of
the Sound object before calling the methods of the Sound object.

The Sound object is only supported for the Flash 5 player.

Method summary for the Sound object

Method Description

attachSound(); Attaches the sound specified in the argument.

getPan(); Returns the value of the previous setPan call.

getTransform(); Returns the value of the previous setTransform call.

getVolume(); Returns the value of the previous setVolume call.

setPan(); Sets the left/right balance of the sound.

setTransform(); Sets transform for a sound.
ActionScript Dictionary 285

Sound overview

Sounds use a considerable amount of disk space and memory. Because stereo
sounds use twice as much data as mono sounds, it’s generally best to use 22-Khz
6-bit mono sounds. You can use the setTransform method to play mono sounds
as stereo, play stereo sounds as mono, and to add interesting effects to sounds.

Constructor for the Sound object

Syntax
new Sound();

new Sound(target);

Arguments

target The movie clip containing the sounds to be set and controlled by the
new object. This argument is optional.

Description

Method; creates a new Sound object for a specified movie clip. If you do not
specify a target, the Sound object controls all of the sounds in the global
Timeline.

Player

Flash 5 or later.

Example

GlobalSound = new Sound();

MovieSound = new Sound(mymovie);

Sound.attachSound
Syntax
mySound.attachSound("idName");

Arguments

idName The name for the new instance of the sound. This is the same as the
name entered for the identifier in the Symbol Linkage Properties dialog box. This
argument must be enclosed in " ".

setVolume(); Sets the volume level for a sound.

start(); Starts playing a sound, from the beginning or optionally from an
offset point set in the argument.

stop(); Stops the specified sound or all sounds currently playing.

Method Description
Chapter 6286

Description

Method; attaches the sound specified in the idName argument to the specified
Sound object. The sound must be in the library of the current movie and specified
for export in the Symbol Linkage Properties dialog box. Use must call
Sound.start to start playing the sound.

Player

Flash 5 or later.

Example

Sound.getPan
Syntax
mySound.getPan();

Arguments

None.

Description

Method; returns the pan level set in the last setPan call as an integer between -
100 and 100. The pan setting controls the left/right balance of the current and
future sounds in a movie.

This method is additive with the setVolume or setTransform methods.

Player

Flash 5 or later.

Example

Sound.getTransform
Syntax
mySound.getTransform();

Arguments

None.

Description

Method; returns the sound transform information for the specified Sound object
set with the last setTransform call. .

Player

Flash 5 or later
ActionScript Dictionary 287

Example

Sound.getVolume
Syntax
mySound.getVolume();

Arguments

None.

Description

Method; returns the sound volume level as an integer from 0 and 100, where 0 is
off and 100 is full volume. The default setting is 100.

Player

Flash 5 or later

Example

Sound.setPan
Syntax
mySound.setPan(pan);

Arguments

pan An integer specifying the left-right balance for a sound. The range of valid
values is -100 to 100, where -100 uses only the the left channel, 100 uses only the
right channel, and 0 balances the sound evenly between the two channels.

Description

Method; determines how the sound is played in the left and right channels
(speakers). For mono sounds, pan affects which speaker (left or right) the sound
plays through.

This method is additive with the setVolume and setTransform methods, and
calling this method deletes and updates previous setPan() and setTransform()
settings.

Player

Flash 5 or later.

Example

The following example uses setVolume and setPan to control a sound object
with the specified target "u2.”

onClipEvent(mouseDown) {
// create a sound object and
s = new Sound(this);
// attach a sound in the library
Chapter 6288

s.attachSound("u2");
//set volume at 50%
s.setVolume(50);
//turn off the sound in the right channel
s.setPan(-100);
//start 30 seconds into the sound and play it 5 times
s.start(30, 5);

Sound.setTransform
Syntax
mySound.setTransform(soundTransformObject);

Arguments

soundTransformObject An object created with the constructor for the generic
object Object.

Description

Method; sets the sound transform information for a Sound object. This method is
additive with the setVolume and setPan methods, and calling this method
deletes and updates any previous setPan or setVolume settings. This call is for
expert users who wish to add interesting effects to sounds.

The sound transformobject argument is an object that you create using the
constructor method of the generic object Object with parameters specifying how
the sound is distributed to the left and right channels (speakers).

The parameters for a sound transformobject are as follows:

11 A percentage value specifying how much of the left input to play in the left
speaker (-100 to 100).

1r A percentage value specifying how much of the the right input to play in the
left speaker (-100 to 100).

rr A percentage value specifying how much of the right input to play in the
right speaker (-100 to 100).

rl A percentage value specifying how much of the left input to play in the right
speaker (-100 to 100).

The net result of the parameters is represented by the formula below:

leftOutput = left input * ll + right input * lr

rightOutput = right lnput * rr + left input * rl

The values for left input or right input are determined by the type (stereo or
mono) of sound in your movie.

Stereo sounds divide the sound input evenly between the left and right speakers
and have the following transform settings by default:
ActionScript Dictionary 289

ll = 100

lr = 0

rr = 100

rl = 0

Mono sounds play all sound input in the left speaker and have the following
transfrom settings by default:

ll = 100
lr = 100
rr = 0
rl = 0

Player

Flash 5 or later.

Example

The following example creates a sound transformobject that plays both the left
and right channels in the left channel.

mySoundTransformObject = new Object
mySoundTransformObject.ll = 100
mySoundTransformObject.lr = 100
mySoundTransformObject.rr = 0
mySoundTransformObject.rl = 0

The code above creates a sound transform object, in order to apply it to a sound
object, you need to pass the object to the Sound object using setTransform as
follows:

mySound.setTransform(mySoundTransformObject);

The following are examples of settings that can be set using setTransform, but
cannot be set using setVolume or setPan, even if combined.

This code plays both the left and right channels through the left channel:

mySund.setTransform(soundTransformObjectLeft);

In the above code, the soundTransformObjectLeft has the following
parameters:

11 = 100
1r = 100
rr = 0
rl = 0

Example

This code plays a stereo sound as mono:

setTransform(soundTransformObjectMono);
Chapter 6290

In the above code, the soundTransformObjectMono has the following
parameters:

ll = 50
lr = 50
rr = 50
rl = 50

Example

This code plays the left channel at half capacity and adds the rest of the left to the
right channel:

setTransform(soundTransformObjectHalf);

In the above code, the soundTransformObjectHalf has the following
parameters:

11 = 50
lr = 0
rr = 100
rl = 50

Sound.setVolume
Syntax
mySound.setVolume(volume);

Arguments

volume A number from 0 to 100 representing a volume level. 100 is full volume
and 0 is no volume. The default setting is 100.

Description

Method; sets the volume for the sound object.

This method is additive with the setPan and setTransform methods.

Player

Flash 5 or later.

See also

The example for setPan.

Sound.start
Syntax
mySound.start();
mySound.start([secondOffset, loop]);
ActionScript Dictionary 291

secondOffset An optional argument allowing you to start the sound playing
at a specific point. For example, if you have a 30 second sound, and want the
sound to start playing in the middle, specify 15 for the secondOffset argument.
The sound is not delayed 15 seconds, but rather starts playing at the 15-second
mark.

loop An optional argument allowing you to specify the number of times the
sound should loop.

Description

Method; starts playing the last attached sound, from the beginning if no argument
is specified, or starting at the point in the sound specified by the secondOffset
argument.

Player

Flash 5 or later.

See also

The example for setPan.

Sound.stop
Syntax
mySound.stop()
mySound.stop(["idName"]);

Arguments

idName An optional argument specifying a specific sound to stop playing.The
idName must be enclosed in double quotes (" ").

Description

Method; stops all sounds currently playing if no argument is specified, or just the
sound specified in the idName argument.

Player

Flash 5 or later.

Example

_soundbuftime
Syntax

instancename._soundbuftime

setProperty("movieclip", _soundbuftime, "integer");

Arguments

integer The number of seconds before the movie starts to stream.

movieclip The name of a movie clip.
Chapter 6292

Description

Global property; establishes the number of seconds of streaming sound to
prebuffer. The default value is 5 seconds.

Player

Flash 4 or later.

startDrag
Syntax
startDrag(target);
startDrag(target,[lock]);
startDrag(target, [lock [, left, top, right, bottom]]]]);

Arguments

target The target path of the movie clip to drag.

lock A Boolean value specifying whether the draggable movie clip is locked to
the center of the mouse position (true), or locked to the point where the user first
clicked on the movie clip (false). This argument is optional.

left, top, right, bottom Together these arguments specify a constraint
rectangle that the movie clip cannot be dragged out of. These arguments are
optional.

Description

Action; makes the target movie clip draggable while the movie is playing. Only
one movie clip can be dragged at a time. Once a startDrag operation is executed,
the movie clip remains draggable until explicitly stopped by a stopDrag action, or
until a startDrag action for another movie clip is called.

Example

To create a movie clip that users can position in any location, use the startDrag
and stopDrag actions.:

on(press) {
 startDrag("MC");
}
on(release) {
 stopDrag();
}

See also
stopDrag

stop
Syntax
stop;
ActionScript Dictionary 293

Arguments

None.

Description

Action; stops the movie that is currently playing. The most common use of this
action is to control movie clips with buttons.

Player

Flash 3 or later.

stopAllSounds
Syntax
stopAllSounds();

Arguments

None.

Description

Action; stops all sounds currently playing in a movie without stopping the
playhead. Sounds set to stream will resume playing as the playhead move over the
frames they are in.

Player

Flash 3 or later.

Example

The following code could be applied to a button that, when clikced, stops all
sounds in the movie.

on(release) {
 stopAllSounds();
}

stopDrag
Syntax
stopDrag();

Arguments

None.

Description

Action; stops the current drag operation.

Player

Flash 4 or later.
Chapter 6294

Example

This statement stops the drag action on the instance mc when the user releases the
mouse button.

on(press) {
startDrag("mc");

}
on(release) {
 stopdrag();
}

See also
startDrag

String
Syntax
String(expression);

Arguments

expression The number, Boolean, variable, or object to convert to a string

Description

Function; returns a string representation of the specified argument as follows:

If x is boolean, the return string is “true,” or “false.”

If x is a number, the return string is a decimal representation of the number.

If x is a string, the return string is “x.”

If x is an object, the return value is generated by calling x.toString, or by default
object.toString.

If x is a movie clip, the return value is the target path of the movie clip in slash (/)
notation.

If x is undefined, the return value is an empty string.

Player

Flash 3 or later.

" " (string delimiter)
Syntax

"text"

Arguments

text Any text.
ActionScript Dictionary 295

Description

String delimiter; when used before and after a string, quotation marks indicate
that the string is a literal—not a variable, numerical value, or other ActionScript
element.

Player

Flash 4 or later.

Example

This statement uses quotation marks to indicate that the string “Prince Edward
Island” is a literal string, and not the value of a variable:

province = "Prince Edward Island"

String
The String object is a wrapper for the string primitive data type, which allows you
to use the methods and properties of the String object to manipulate primitive
string value types.You can convert the value of any object into a string using the
String() function.

All of the methods of the String object, except for concat, fromCharCode,
slice, and substr, are generic. This means the methods themselves call
this.toString before performing their operations. These methods can be
transplanted to other non-String objects and they will still work.

You can call any of the methods of the String object using the constructor method
new String() or using a string literal value. If you specify a string literal
ActionScript automatically converts it to a temporary String object, calls the
method, and then discards the temporary String object. You can also use the
String.length property with a string literal.

It is important that you do not confuse a string literal with an instance of the
String object. In the following example the first line of code creates the string
literal s1, and the second line of code creates an instance of the String object s2.

s1 = "foo"
s2 = new String("foo")

It is recommended that you use string literals unless you specifically need to use a
String object, as String objects can have cosunterintuitive behavior.
Chapter 6296

Method summary for String object

Property summary for the Stringobject

Constructor for the String object
Syntax
new String(value);

Arguments

value The initial value of the new string object.

Method Description

charAt(); Returns a number corresponding to the placement of the character
in the string.

charCodeAt(); Returns the value of the character at the given index as a 16-bit
integer between 0 and 65535.

concat(); Combines the text of two strings and returns a new string

fromCharCode(); Returns a string made up of the characters specified in the
agruments.

indexOf(); Searches the string and returns the index of the value specified in
the arguments. If value occurs more than once, the index of the first
occurance is returned. If value is not found, -1 is returned.

lastIndexOf(); Returns the last occurance of substring within the string, that
appears before the start postioin specified in the argument, or -1 if
not found.

slice(); Extracts a section of a string and returns a new string.

split(); Splits a string object into an array of strings by separating the string
into substrings.

substr(); Returns a specified number of the characters in a string, beginning
at the location specified in the argument.

substring(); Returns the characters between two indices, specified in the
arguments, into the string.

toLowerCase(); Converts the string to lowercase and returns the result.

toUpperCase(); Converts the string to uppercase and returns the result.

Property Description

length Returns the length of the string.
ActionScript Dictionary 297

Description

Constructor; creates a new String object.

Player

Flash 5 or later.

String.charAt
Syntax
myString.charAt(index);

Arguments

index The number of the character in the string to be returned.

Description

Method; returns the character specified by the argument index. The index of the
first character in a string is 0. If index is not a number from 0 to string.length
- 1, an empty string is returned.

Player

Flash 5 or later.

String.charCodeAt
Syntax
myString.charCodeAt(index);

Arguments

index The number of the character for which the value is retrieved.

Description

Method; returns the value of the character specified by index. The returned value
is a 16-bit integer from 0 to 65535.

This method is similar to string.charAt except that the returned value is for the
character at a specific location, instead of a substring containing the character.

Player

Flash 5 or later.

String.concat
Syntax
myString.concat(value,.....);

Arguments

value A value to be concatenated. You can specify more than one value
argument.
Chapter 6298

Description

Method; combines the specified values, and returns a new string. If necessary, each
value argument is converted to a string and appended, in order, to the end of the
string.

Player

Flash 5 or later.

String.fromCharCode
Syntax
myString.fromCharCode(c1, c2,....);

Arguments

c1, c2 The characters to be made into a string.

Description

Method; returns a string made up of the characters specified in the agruments.

Player

Flash 5 or later.

String.indexOf
Syntax
myString.indexOf(value1,);

myString.index of (value, start);

Arguments

value An integer or string specifying the substring to be searched for within
myString.

start An integer specifying the starting point of the substring. This argument is
optional.

Description

Method; searches the string and returns the position of the first occurrence of the
specified value. If the value is not found, the method returns -1.

Player

Flash 5 or later.

String.lastIndexOf
Syntax
myString.lastIndexOf(substring);
ActionScript Dictionary 299

myString.lastIndexOf(substring, start);

Arguments

substring An integer or string specifying the string to be searched for.

start An integer specifying the starting point inside the substring. This
argument is optional.

Description

Method; searches the string and returns the index of the last occurrence of
substring found within the calling string. If substring is not found, the
method returns -1.

Player

Flash 5 or later.

String.length
Syntax
string.length

Arguments

None.

Description

Property; returns the length of the specified String object.

Player

Flash 5 or later.

String.slice
Syntax
myString.slice(start, end);

Arguments

start A number specifying the index of the starting point for the slice. If start
is a negative number, the starting point is determined from the end of the string,
where -1 is the last character.

end A number specifying the index of the ending point for the slice. If end is
not specified, the slice includes all characters from the start to the end of the
string. If end is a negative number, the ending point is determined from the end
of the string, where -1 is the last character.
Chapter 6300

Description

Method; extracts a slice, or substring of the specified String object; then returns it
as a new string, without modifying the original String object. The returned string
includes the start character, and all characters up to (but not including) the end
character.

Player

Flash 5 or later.

String.split
Syntax
myString.split(delimiter);

Arguments

delimiter The character used to delimit the string.

Description

Method; splits a String object by breaking the string wherever the specified
delimiter occurs, and returns the substrings in an array. If no delimiter is
specified, the returned array contains only one element – the string itself. If the
delimiter is an empty string, each character in the String object becomes an
element in the array.

Player

Flash 5 or later.

String.substr
Syntax
myString.substr(start, length);

Arguments

start An integer that indicates the position of the first character in the
substring being created. If start is a negative number, the starting position is
determined from the end of the string, where the -1 is the last character.

length The number of characters in the substring being created. If length is
not specified, the substring includes all of the characters from the start to the end
of the string.

Description

Method; returns the characters in a string from the index specified in the start
argument, through the number of characters specified in the length argument.

Player

Flash 5 or later.
ActionScript Dictionary 301

String.substring
Syntax
myString.substring(from, to);

Arguments

from An integer that indicates the position of the first character in the substring
being created. Valid values for from are 0 through string.length - 1.

to An integer that is 1+ the index of the last character in the substring being
created. Valid values for to are 1 through string.length. If the to argument is
not specified, the end of the substring is the end of the string. If from equals to,
the method returns an empty string. If from is greater than to, the arguments are
automatically swapped before the function executes.

Description

Method; returns a string consisting of the characters between the points specified
by the from and to arguments.

Player

Flash 5 or later.

String.toLowerCase
Syntax
myString.toLowerCase();

Arguments

None.

Description

Method; returns a copy of the String object, with all of the uppercase characters
converted to lowercase.

Player

Flash 5 or later.

String.toUpperCase
Syntax
myString.toUpperCase();

Arguments

None.

Description

Method; returns a copy of the String object, with all of the lowercase characters
converted to uppercase.
Chapter 6302

Player

Flash 5 or later.

substring
Syntax
substring(string, index, count);

Arguments

string The string from which to extract the new string.

index The number of the first character to extract.

count The number of characters to include in the extracted string, not
including the index character.

Description

String function; extracts part of a string.

Player

Flash 4 or later. This function has been deprecated in Flash 5.

_target
Syntax
instancename._target

Arguments

instancename The name of a movie clip instance.

Description

Property; specifies the target path of the specified movie clip.

Player

Flash 4 or later.

Example

targetPath
Syntax
targetpath(instancename);

Arguments

instancename the instance name of a movie clip.
ActionScript Dictionary 303

Description

Function; returns the path of the movie clip as a string, which makes it possible to
identify the targeted movie by reference instead of specifying the targetpath of a
movie clip directly.

Player

Flash 5 or later.

Example

Both of the following scripts are equivlent.

targetPath (Board.Block[index*2+1]). Play {
...
}

This use of targetPath is equivalent to:

tellTarget ("Board/Block:" + (index*2+1)) {
...
}

See also
eval

tellTarget
Syntax
tellTarget(target) {
statement;
}

Arguments

target The Timeline to be controlled. Any statements nested within
tellTarget apply to the targeted Timeline.

statement Instructions to execute at the target.

Description

Action; controls a movie clip or a movie that was loaded with the loadMovie
action.

The tellTarget action is useful for navigation controls. You can assign
tellTarget to a frame, movie clip, or button. For example, you might assign
tellTarget to a buttons that stop or start movie clips on the Stage or prompt
movie clips to jump to a particular frame.

Player

Flash 3 or later. This action is deprecated in Flash 5; use of the with action is
recommended.
Chapter 6304

Example

This tellTarget statement controls a the movie clip instance ball on the main
Timeline. Frame 1 of the movie clip is blank and has a stop() action so that it
isn’t visible on the Stage. When the button with the following action is clicked,
tellTarget tells the playhead in the movie clip ball to go to frame 2 and play
the animation that starts there.

on(release) {
 tellTarget("/ball") {
 gotoAndPlay(2);
 }
}

See also

with

this
Syntax
this

Arguments

None.

Description

Keyword; references an object or mov ie clip instance. The keyword this has the
same purpose and function in ActionScript as it does in JavaScript, with the
additional functionality of when an action script is executing, this references a
movie clip instance that contains a script. When used with a method invocation,
this contains a reference to the object instance containing the method being
executed.

Player

Flash 5 or later.

Example

In this example the keyword this references the Circle object.

function Circle(radius)
{
this.radius = radius;

 this.area = math.PI * radius * radius;

}

In the following examples the keyword this references the current movie clip.

//sets the alpha property of the current movie clip to 20.
this._alpha = 20;
ActionScript Dictionary 305

//when the movie clip loads, a startDrag operation is intitated
for the current movie clip.
onClipEvent (load) {
startDrag (this, true);

}

See also

new operator

toggleHighQuality
Syntax
toggleHighQuality();

Arguments

None.

Description

Action; turns anti-aliasing on and off in the Flash Player. Anti-aliasing smooths
the edges of objects and slows down the movie playback. The
toggleHighQuality action affects all movies in the Flash Player.

Player

Flash 2 or later.

Example

The following code could be applied to a button that when clicked, would toggle
anti-aliasing on and off.

on(release) {
 toggleHighQuality();
}

_totalframes
Syntax
instancename._totalframes

Arguments

instancename The name of the movie clip to evaluate.

Description

Property (read-only); evaluates the specified movie clip (instance name) to
determine the total number of frames.

Player

Flash 4 or later.
Chapter 6306

Example

trace
Syntax
trace(expression);

Arguments

expression A statement to evaluate. When you test the movie, the results are
returned to the Output Window.

Description

Action; displays information in the Output window. Use trace to record
programming notes or display messages in the Output window while testing of a
button action or frame in a movie. Use the expression parameter to check if a
condition exists, or to display values in the Output Window. The trace action is
similar to the alert function in JavaScript.

Player

Flash 4 or later.

Example

This example is from a game in which a draggable movie clip instance named
rabbi must be dragged to and released on the one side of a river. The
expression evaluates the _droptarget property and verifies that the movie clip
has been dragged to and released in the correct location. Use the trace() action
at the end of the script to evaluate the location of the _x and _y properties of the
rabbi movie clip. The results of the evaluation are displayed in the Output
window.

on(press) {
rabbi.startDrag();
}
on(relese) {
if(_droptarget != target) {

 rabbi._x = rabbi_x;
 rabbi._y = rabbi_y;

} else {
rabbi_x = rabbi._x;
rabbi_y = rabbi._y;
target = "_root.pasture";
}
trace("rabbi_y = " + rabbi_y);
trace("rabbi_x = " + rabbi_x);
stopDrag();
}

ActionScript Dictionary 307

typeof
Syntax
typeof(expression);

Arguments

expression A string, movie clip, object, or function.

Description

Operator; a unary operator placed before a single argument. Causes Flash to
evaluate expression; the result is a string specifying whether the expression is a
string, movie clip, object, or function.

Player

Flash 5 or later.

unescape
Syntax
unescape(x);

Arguments

x A string with hexidecimal sequences to escape.

Description

Top-level function; evaluates the argument x as a string, decodes the string from a
URL-encoded format (converting all hexidecimal sequences to ASCII characters),
and returns the string.

Player

Flash 5 or later.

Example

The following example illustrates the escape=unescape conversion process.

escape("Hello{ [World] }");

The “escaped” result is as follows:

Hello%7B%5BWorld%5D%7D

Use unescape to return to the original format:

unescape("Hello%7B%5BWorld%5D%7D")

The result is as follows:

Hello{ [World] }
Chapter 6308

unloadMovie
Syntax
unloadMovie(location);

Arguments

location The level or target from which to unload the movie.

Description

Action; removes a movie previously loaded by the loadMovie from the Flash
Player.

Player

Flash 3 or later.

Example

The following example unloads the main movie, leaving the Stage blank.

unloadMovie(_root);

The following example unloads the movie at level 15, when the user clicks the
mouse.

on(press) {
unloadMovie(_level15);

}

See Also
loadMovie

updateAfterEvent
updateAfterEvent() allows for the the update of the screen independent of the
movies' set frames per second. Only functions with clipactions:
mousedown,mouseup, keydown, keyup, and mousemove (this action does not
reside in the actions inspector actions list)

Syntax
updateAfterEvent(movie clip event);

Arguments

movie clip event One of the following movie clip events:

• mouseMove The action is initiated every time the mouse is moved. Use the
the _xmouse and _ymouse properties to determine the current mouse position.

• mouseDown The action is initiated if the left mouse button is pressed.

• mouseUp The action is initiated if the left mouse button is released.

• keyDown The action is initiated when a key is pressed. Use the Key.getCode
method to retrieve information about the last key pressed.
ActionScript Dictionary 309

• keyUp The action is initiated when a key is released.Use the key.getCode
method to retreive information about the last key pressed.

Description

Action; updates the display (independent of the frames per second set for the
movie) after the clip event specified in the arguments has completed. This action
is not listed in the Flash Actions Panel. Using updateAfterEvent with drag
actions that specify the _x and _y properties during the mouse move, allows
objects to drag smoothly without a flickering screen effect.

Player

Flash 5 or later.

Example

See Also
onClipEvent

_url
Syntax

instancename._url

setProperty("movieclip", _url, "URL");

Arguments

movieclip The target movie clip.

URL The URL where the movie clip resides.

Description

Property (read only); retreives the location URL for the movie clip.

Player

Flash 4 or later?

var
Syntax
var variableName1 [= value1] [...,variableNameN [=valueN]];

Arguments

variableName The name of the variable to declare.

value The value being assigned to the variable.
Chapter 6310

Description

Action; used to declare local variables. If you declare local variables inside a
function, the variables are scoped to the function and expire at the end of the
function call. If variables are not declared inside a block, but the action list was
executed with a call action, the variables are local and expire at the end of the
current list. If variables are not declared inside a block and the current action list
was not executed with the call action, the variables are not local.

Player

Flash 5 or later.

Example

_visible
Syntax
instancename._visible, "boolean";

Arguments

boolean True or false value specifying whether the movie is visible.

Description

Property; determines whether or not the movie specified by the instancename
argument is visible.

Player

Flash 4 or later.

void
Syntax
void (expression)

Arguments

expression An expression of any value.

Description

Operator; a unary operator that discards the expression value and returns an
undefined value. The void operator is often used to evaluate a URL in order to
test for side effects without displaying the evaluated expression in the browser
windos. The void operator is also used in comparisons using the ==operator, to
test for undefined values.

Player

Flash 5 or later.
ActionScript Dictionary 311

Example

while
Syntax
while(condition) {
statement(s);
}

Arguments

condition The statement that is reevaluated each time the while action is
executed. If the statement evaluates to true, the expression statement is run.

statement(s) The expression to run if the condition evaluates to true.

Description

Action; runs a statement or series of statements repeatedly while a condition is
true; this is called looping. At the end of each while action, Flash restarts the
loop by retesting the condition. If the condition is false or equal to 0, Flash skips
to the first statement after the while action.

Looping is commonly used to perform an action whilea counter variable is less
than a specified value. At the end of each loop, you increment the counter.

Player

Flash 4 or later.

Example

This example duplicates five movie clips on the Stage, each with a randomly
generated x and y position, x and y scale, and _alpha property to achieve a
scattered effect. The variable foo is initialized to the value 0. The condition
argument is set so that the while loop will run five times, or as long as the value
of the variable foo is less than 5. Inside the while loop, a movie clip is duplicated
and setProperty is used to adjust the various properties of the duplicated movie
clips. The last statement of the loop increments foo t so that when the value
reaches 5, the condition argument will fail and the loop will not be executed.

on(release) {
foo = 0;
while(foo < 5) {

 duplicateMovieClip("/flower", "mc" + foo, foo);
 setProperty("mc" + foo, _x, random(275));
 setProperty("mc" + foo, _y, random(275));
 setProperty("mc" + foo, _alpha, random(275));
 setProperty("mc" + foo, _xscale, random(200));
 setProperty("mc" + foo, _yscale, random(200));
 foo = foo + 1;
 }
}

Chapter 6312

_width
Syntax

instancename._width=value;

setProperty("movieclip", _width, "value");

Arguments

value The width of the movie in pixels.

instancename An instance name of a movie clip for which the _height
property is to be set or retreived.

movieclip The movie clip being measured or sized.

Description

Property; sets the width of the movie. In previous versions of Flash, _height and
_width were read-only properties, in Flash 5 they can be set as well as retreived.

Player

Flash 4 as a read-only property. In Flash 5 or later, this property can be set as well
as retreived.

Example

The following code example sets the height and width of a movie clip when the
user clicks the mouse.

onclipEvent(mouseDown) {
_width=200;
_height=200;
}

_x
Syntax

instancename._x

setProperty("movieclip", _x, "integer");

Arguments

integer The local x coordinate of the movie.

movieclip The name of a movie clip.

Description

Property; sets the x coordinate of movie as determined by the movie clip’s parent.
The upper-left hand corner of the stage is (0,0).

Player

Flash 3 or later.
ActionScript Dictionary 313

Example

XML Object
Use the methods and properties of the XML object to load, parse, send, build, and
manipulate XML document trees.

You must use the constructor new XML() to create an instance of the XML object
before calling any of the methods of the XML object. Additionally, you must call
the createElement or createTextnode methods before you can call any method
that operates on a element or text node of an XML document. Use the methods of
the XML Socket object to establish and manage the socket connections used to
send XML documents to a remote server.

XML is supported by Flash 5 or later versions of the Flash player.

Method summary for the XML object

Method Description

appendChild(); Appends a node to the end of the specified object’s child list.

cloneNode(); Clones the specified node, and optionally recursively clones all
children.

createElement(); Creates a new XML element for the specified XML object.

createTextNode(); Creates a new XML text node for the specifed XML object.

hasChildNodes(); Returns true if the specified node has child nodes; otherwise,
returns false.

insertBefore(); Inserts a node in front of an existing node in the specified
node's child list.

load(); Loads a document (specified by the XML object) from a URL.

onLoad(); A callback function for load and sendAndLoad.

parseXML(); Parses an XML document into the specified XML object tree.

removeNode(); Removes the specified node from its parent.

send(); Sends the specified XML object to a URL.

sendAndLoad(); Sends the specified XML object to a URL,and loads the server
response into another XML object.

toString(); Converts the specified node and any children to XML text.
Chapter 6314

Property summary for the XML object

Collections summary for the XML object

Constructor for the XML object

Syntax
new XML();
new XML(source);

Arguments

source The XML document parsed to create the new XML object.

Method Description

docTypeDecl Sets and returns infomation about an XMLdocument’s
DOCTYPE declaration.

firstChild(); References the first child in the list for the specified node.

lastChild(); References the last child in the list for the specified node.

loaded(); Checks if the specified XML object has loaded.

nextSibling(); References the next sibling in the parent nodes child list.

nodeName(); Returns the tag name of an XML element..

nodeType(); Returns the type of the specified node (XML element or text
node).

nodeValue(); Returns the text of the specified node if the node is a text
node.

parentNode(); References the parent node of the specified node.

previousSibling(); References the previous sibling in the parent nodes child list.

staus Returns a numeric status code indicating the success or failure
of an XML document parsing operation..

xmlDecl Sets and returns informaion about an XML document’s
document declaration.

Method Description

attributes(); Returns an associative array containing all of the attributes of
the specified node.

childNodes(); Returns an array containing references to the child nodes of
the specified node.
ActionScript Dictionary 315

Description

Constructor; creates a new XML object. You must use the constructor method to
create an instance of the XML object before calling any of the XML object
methods. You must additionally, use the createElement or createTextnode
methods before calling any methods that access or manipulate the XML
document tree structure.

The first syntax constructs a new, empty XML object.

The second syntax constructs a new XML object by parsing the XML document
specified in the source argument, and populates the newly created XML object
with the resulting XML document tree.

Note: The createElement and createTextnode methods are the ‘constructor’
methods for creating the elements and text nodes in an XML document tree. You must call
one of these methods before you can call any of the methods that access or manipulate
nodes.

Player

Flash 5 or later.

Example

The following example creates an new empty XML object.

new XML() = myXML

XML.appendChild
Syntax
myXML.appendChild(childNode);

Arguments

childNode The child node to be added to the specified XML object’s child list.

Description

Method; appends the specified child node, to the XML object’s child list. The
appended child node is placed in the tree structure first removed from its existing
parent node, if any. To use this method you must first create an element or text
node using createElement or createTextNode.

Player

Flash 5 or later.

Example

XML.attributes
Syntax
myXML.attributes();
Chapter 6316

Arguments

None.

Description

Collection (read-write); returns an associative array containing all attributes of the
specified XML object. To use this method you must first create an element or text
node using createElement or createTextNode.

Player

Flash 5 or later.

Example

XML.childNodes
Syntax
myXML.childNodes();

Arguments

None.

Description

Collection (read-only); returns an array of the specified XML object’s children,
which gives you a full view of the XML document tree, including all nodes, all
elements, and any children. Each element in the array is a reference to an XML
object that represents a child node.This is a read-only property and cannot be
used to manipulate child nodes. Use the methods appendChild, insertBefore,
and removeNode to manipulate child nodes.To use this method you must first
create an element or text node using createElement or createTextNode.

This collection is undefined for text nodes (nodeType == 3)

Player

Flash 5 or later.

Example

XML.cloneNode
Syntax
myXML.cloneNode(deep);

Arguments

deep Boolean value specifying whether the children of the specified XML object
are recursively cloned.
ActionScript Dictionary 317

Description

Method; constructs and returns a new XML node of the same type, name, value,
and attributes as the specified XML object. If deep is set to true, all child nodes
are recursively cloned, resulting in an exact copy of the original object’s document
tree. To use this method you must first create an element or text node using
createElement or createTextNode.

Player

Flash 5 or later.

Example

XML.createElement
Syntax
myXML.createElement(name);

Arguments

name The name of the XML element being created.

Description

Method; creates a new XML element with the name specified in the argument.
The new element initially has no parent and no children. The method returns a
reference to the newly created XML object representing the element. This method
and createTextNode are the constructor methods that must be called before
using XML object methods that target nodes and elements.

Player

Flash 5 or later.

Example

XML.createTextNode
Syntax
myXML.createTextNode(text);

Arguments

text The text used to create the new t ext node.

Description

Method; creates a new XML text node with the specified text. The new node
initially has no parent, and text nodes can not have children. This method returns
a reference to the XML object representing the new text node. This method and
createElement are the constructor methods that must be called before using
XML object methods that target nodes and elements.

Player

Flash 5 or later.
Chapter 6318

Example

XML.docTypeDecl
Syntax

myXML.XMLdocTypeDecl();

Arguments

None.

Description

Property; sets and returns information about the XML document DOCTYPE
declaration. After the XML text has been parsed into an XML object, the
XML.docTypeDecl property of the XML object is set to the text of the XML
document's DOCTYPE declaration. For example, <!DOCTYPE greeting SYSTEM
"hello.dtd">. This property is set using a string representation of the
DOCTYPE declaration, not an XML node object.

ActionScript's XML parser is not a validating parser. The DOCTYPE declaration
is read by the parser and stored in the docTypeDecl property, but no DTD
validation is performed.

If no DOCTYPE declaration was encountered during a parse operation,
XML.docTypeDecl is set to undefined. XML.toString outputs the contents of
XML.docTypeDecl immediately after the XML declaration stored in
XML.xmlDecl, and before anyother text in the XML object. If XML.docTypeDecl
is undefined, no DOCTYPE declaration is output.

Player

Flash 5 or later.

Example

The following is an example uses XML.docTypeDecl to set the DOCTYPE
declaration for an XML object.

myXML.docTypeDecl = "<!DOCTYPE greeting SYSTEM \"hello.dtd\">";

See also

XML.toString
XML.xmlDecl

XML.firstChild
Syntax
myXML.firstChild();

Arguments

None.
ActionScript Dictionary 319

Description

Property (read-only); evaluates the specified XML object and references the first
child in the parent nodes children list. This method returns null if the node does
not have children. The XML object must be an element or text node. This is a
read-only property and cannot be used to manipulate child nodes; use the
methods appendChild, insertBefore, and removeNode to manipulate child
nodes. To use this method you must first create an XML object specifiying an
element or text node using createElement or createTextNode.

Player

Flash 5 or later.

See also
XML.appendChild, insertBefor, removeNode

XML.haschildNodes
Syntax
myXML.hasChildNodes();

Arguments

None.

Description

Method; evaluates the specified XML object and returns true if there are child
nodes; otherwise, returns false. To use this method you must first create an XML
object specifiying an element or text node using createElement or
createTextNode.

Player

Flash 5 or later.

Example

XML.insertBefore
Syntax
myXML.insertBefore(childNode, beforeNode);

Arguments

childNode The node to be inserted.

beforeNode The node before the insertion point for the childNode.

Description

Method; inserts a new child node intothe XML object’s chidl list, next to any
existing parent nodes, and after the beforeNode. To use this method you must
first create an XML object specifiying an element or text node using
createElement or createTextNode.
Chapter 6320

Player

Flash 5 or later.

Example

XML.lastChild
Syntax
myXML.lastChild();

Arguments

None.

Description

Property (read-only); evaluates the XML object and references the last child in the
parent nodes child list. This method returns null if the node does not have
children. To use this method you must first create an XML object specifiying an
element or text node using createElement or createTextNode.This is a read-
only property and cannot be used to manipulate child nodes; use the methods
appendChild, insertBefore, and removeNode to manipulate child nodes.

Player

Flash 5 or later.

See also
XML.appendChild, insertBefore, removeNode

XML.load
Syntax
myXML.load(url);

Arguments

url The URL where the XML document to be loaded is located. The URL
must be in the same subdomain as the URL where the movie currently resides.

Description

Method; loads an XML document from the specified URL, and replaces the
contents of the specified XML object with the downloaded XML data. The load
process is asynchronous; it does not finish until after the load method is executed.
When load is executed, the XML object property loaded is set to false. When
the XML data finishes downloading, the loaded property is set to true, and the
onLoad method is called. The XML data is not parsed until it is completely
downloaded. If the XML object contains any XML trees, they are discarded.

You can specify your own callback function in place of the onLoad method.

Player

Flash 5 or later.
ActionScript Dictionary 321

Example

XML.loaded
Syntax
myXML.loaded();

Arguments

None.

Descriptio

Property (read-only); determines whether the document loading process initiated
by the load call has completed. If the process is successfully completed, the
method returns true; otherwise, returns false.

Player

Flash 5 or later.

Example

XML.nextSibling
Syntax
myXML.nextSibling();

Arguments

None.

Description

Property (read-only); evaluates the XML object and references the next sibling in
the parent nodes children list. This method returns null if the node does not have
a next sibling node. To use this method you must first create an XML object
specifiying an element or text node using createElement or createTextNode.
This is a read-only property and cannot be used to manipulate child nodes. Use
the methods appendChild, insertBefore, and removeNode to manipulate child
nodes. To use this method you must first create an XML object specifiying an
element or text node using createElement or createTextNode.

Player

Flash 5 or later.

See also
XML.appendChild, insertBefore, removeNode

XML.nodeName
Syntax
myXML.nodeName();
Chapter 6322

Arguments

None.

Description

Property; takes or returns the node name of the XML object. If the XML object is
an XML element (nodeType == 1), nodeName is the name of the tag representing
the node in the XML file. For example, TITLE is the nodeName of an HTML
TITLE tag. If the XML object is a text node (nodeType == 3), the nodeName is
null. To use this method you must first create an XML object specifiying an
element or text node using createElement or createTextNode.

Player

Flash 5 or later.

See also
XML.nodeType

XML.nodeType
Syntax
myXML.nodeType();

Arguments

None.

Description

Property (read-only); takes or returns a nodeType value, where 1 == XML
element and 3 == text node. To use this method you must first create an XML
object specifiying an element or text node using createElement or
createTextNode.

Player

Flash 5 or later.

See also
XML.nodeValue

XML.nodeValue
Syntax

myXML.nodeValue(x); (read)

myXML.nodeValue = "x"; (write)

Arguments

x The text of the node if the text is a text node.
ActionScript Dictionary 323

Description

Property; returns the node type and node value of the XML object. If the XML
ojbect is a text node, nodeType == 3 and the nodeValue contains the text of the
node. If the XML object is an XML element, it has a null value and is read only.
To use this method you must first create an XML object specifiying an element or
text node using createElement or createTextNode.

Player

Flash 5 or later.

See also
XML.nodeType

XML.onLoad
Syntax

myXML.onLoad(function);

Arguments

function A function calling an action. This argument is optional.

Description

Method; if the function argument is specified, an action defined by the function
is executed when the XML object has finished loading from the Web server. If no
argument is specified, no action action is taken. See the load and sendAndLoad
methods for more information.

Player

Flash 5 or later.

See also
XML.load, sendAndLoad

XML.parentNode
Syntax
myXML.parentNode();

Arguments

None.

Description

Property (read-only); references the parent node of the specified XML object, or
returns null if the node has no parent. To use this method you must first create an
XML object specifiying an element or text node using createElement or
createTextNode. This is a read-only property and cannot be used to manipulate
child nodes; use the methods appendChild, insertBefore, and removeNode to
manipulate children.
Chapter 6324

Player

Flash 5 or later.

Example

XML.parseXML
Syntax
myXML.parseXML(source);

Arguments

source The XML document to be parsed and passed to the specified XML
object.

Description

Method; parses the XML document specified in the source argument, and
populates the specified XML object with the resulting XML tree. Any existing
trees in the XML object are discarded.

Player

Flash 5 or later.

Example

XML.previousSibling
Syntax
myXML.previousSibling();

Arguments

Description

Property (read-only); evaluates the XML object and references the previous sibling
in the parent nodes child list. Returns null if the node does not have a previous
sibling node. To use this method you must first create an XML object specifiying
an element or text node using createElement or createTextNode. This is a
read-only property and cannot be used to manipulate child nodes; use the
methods appendChild, insertBefore, and removeNode to manipulate child
nodes.

Player

Flash 5 or later.
ActionScript Dictionary 325

Example

XML.removeNode
Syntax
myXML.removeNode();

Arguments

None.

Description

Method; removes the specified XML object from its parent. To use this method
you must first create an XML object specifiying an element or text node using
createElement or createTextNode.

Player

Flash 5 or later.

Example

XML.send
Syntax
myXML.send(url);
myXML.send(url, window);

Arguments

url The destination URL for the specified XML object.

window The browser window to display data returned by the server: _self
specifies the current frame in the current window, _blank specifies a new window,
_parent specifies the parent of the current frame, and _top specifies the top-level
frame in the current window.

Description

Method; encodes the specified XML object into a XML document and sends it to
the specified URL using the POST method.

Player

Flash 5 or later.

Example

XML.sendAndLoad
Syntax
myXML.sendAndLoad(url,targetXMLobject);
Chapter 6326

Arguments
url The destination URL for the specified XML object. The URL must be in
the same subdomain as the URL where the movie currently resides.
targetXMLobject An XML object created with the constructor method.

Description

Method; encodes the specified XML object into a XML document, sends it to the
specified URL using the POST method, downloads the server’s response and then
loads it into the targetXML object specified in the arguments. The server response
is loaded in the same manner used by the load method.

Player

Flash 5 or later.

Example

XML.status
Syntax

myXML.status();

Arguments

None.

Description

Property; automatically sets and returns a numeric value indicating the success or
failure of parsing an XML document into an XML object.The following is a list of
the numeric status codes and a description of each.

• 0 No error; parse completed successfully.

• 2 A CDATA section was not properly terminated.

• 3 The XML declaration was not properly terminated.

• 4 The DOCTYPE declaration was not properly terminated.

• 5 A comment was not properly terminated.

• 6 An XML element was malformed.

• 7 Out of memory.

• 8 An attribute value was not properly terminated.

• 9 A start-tag was not matched with an end-tag.

• 10 An end-tag was encountered without a matching start-tag.

Player

Flash 5 or later.

Example
ActionScript Dictionary 327

XML.toString
Syntax
myXML.toString();

Arguments

None.

Description

Method; for XML objects targeting nodes (created with an XML object
specifiying an element or text node using createElement or createTextNode)
XML.toString evaluates the specified XML object, constructs a textural
representation of the XML structure including the node and any children, and
returns the result as a string.

For top-level XML objects (those created with the constructor), XML.toString
outputs the document's XML declaration (stored in XML.xmlDecl), followed by
the document's DOCTYPE declaration (stored in XML.docTypeDecl), followed
by the text representation of all XML nodes in the object. The XML declaration
is not output if XML.xmlDecl is undefined. The DOCTYPE declaration is not
output if XML.docTypeDecl is undefined.

Player

Flash 5 or later.

Example

The following example uses XML.toString to access the nodes of an XML object.

node = new XML("<h1>test</h1>");
trace(node.toString());
sends
<H1>test</H1>
to the output window
See also
XML.xmlDecl
XML.docTypeDecl

XML.xmlDecl
Syntax
myXML.xmlDecl();

Arguments
None.
Chapter 6328

Description

Property; sets and returns information about an XML document’s document
declaration. After the XML document is parsed into an XML object, this property
is set using the text of the XML document’s declaration. This property is set using
a string representation of the XML declaration, not an XML node object. If no
XML declaration was encountered during a parse operation, the property is set to
undefined. XML.toString outputs the contents of XML.xmlDecl before any other
text in the XML object. If XML.xmlDecl contains the "undefined"type, no XML
declaration is output.

XMLSocket object
The XMLSocket object allows you to manage the socket connections so that you
can transfer XML documents to and from XML compatible servers and enhance
client-server interaction.

To use the methods of the XMLSocket object, you must first use the constructor
to create a new XMLSocket object.

Player

Flash 5 or later.

Example

The following is an example uses XML.xmlDecl to set the XML document
declaration for an XML object.

myXML.xmlDecl = "<?xml version=\"1.0\" ?>";

See also

XML.toString
XML.docTypeDecl

Method summary for the XMLSocket object

Method Description

close(); Closes an open socket connection.

connect(); Establishes a connection to the specified server..

onConnect(); A callback function that is called when an XML socket
connection is attempted.

onXML(); A callback function that is called when an XML object arrives
from the server.

send(); Sends an XML object to the server.
ActionScript Dictionary 329

Constructor for XML Socket object

Syntax
new XMLSocket();

Arguments

None.

Description

Constructor; creates a new XMLSocket object.

Player

Flash 5 or later.

Example
new XMLSocket = myXMLSocket

XMLSocket.close
Syntax
myXMLSocket.close();

Arguments

None.

Description

Method; closes the connection specified by XMLSocket object.

Player

Flash 5 or later.

Example

XMLSocket.connect
Syntax
myXMLSocket.connect(host, port);

Arguments

host A fully qualified DNS domain name, or a IP address in the form
aaa.bbb.ccc.ddd.

port The port number on the host used to establish a connection. The port
number must be 1024 or higher.

Description

Method; establishes a connection to the specified Internet host using the specified
TCP port (must be 1024 or higher). If you don’t know the port number of your
Internet host machine, contact your network administrator. A socket connection
can only connect to a host from the same subdomain as the movie.
Chapter 6330

Note: If the Flash Netscape plug-in or ActiveX control is being used, the host specified in
the argument must have the same subdomain as the host the SWF file to be played
originated . This restriction is vital .

Player

Flash 5 or later.

Example

XMLSocket.onClose
Syntax
myXMLSocket.onClose();

Arguments

None.

Description

Method; by default, this method does nothing, and is only called when an open
connection is closed by the server. You can override this method to perform your
ownb actions.

Player

Flash 5 or later.

Example

XMLSocket.onConnect
Syntax
myXMLSocket.onConnect(success);

Arguments

success A Boolean value indicating whether a socket connection was
successfully established (true or false).

Description

Method; by default this method is not active, and is only called if theconnect
method is called. The onConnect method returns true if the connection is
successfully established; otherwise, returns false.You can override this method to
perform your own actions.

Player

Flash 5 or later.

See also
XMLSocket.connect
ActionScript Dictionary 331

XMLSocket.onXML
Syntax
myXMLSocket.onXML(data);

Argument

data An instance of XML object.

Description

Method; by default, this method does nothing, and is only called when an XML
object is transferred from a server, to Flash, through an open XMLSocket
connection. You can use values returned by the XML object to override the ‘do
nothing’ setting and perform user-defined actions.

Player

Flash 5 or later.

XMLSocket.send
Syntax
myXMLSocket.send(data);

Arguments

data An XML object.

Description

Method; sends an XML object to the server over the specified XMLSocket
connection.

Player

Flash 5 or later.

_xmouse
Syntax
instancename._xmouse

Arguments

instancename The name of a movie clip instance.

Description

Property (read-only); indicates the x coordinate of the mouse position.

This property is returned by the getMousePostion function.

Player

Flash 5 or later.

See also
_ymouse
Chapter 6332

_xscale
Syntax

instancename._xscale

setProperty("movieclip", _xscale, "percentage");

Arguments

percentage The scale of the current movie.

movieclip The name of a movie clip.

Description

Property; sets the scale (percentage) of the movie as applied from the registration
point of the movie clip. The default registration point is (0,0).

Player

Flash 4 or later.

_y
Syntax

instancename._y

setProperty("movieclip", _y, "integer");

Arguments

integer The local y coordinate of the movie clip.

movieclip The name of a movie clip.

Description

Property; sets the y coordinate of movie as determined by the movie clip’s parent.
The upper-left hand corner of the stage is (0,0).Player

Player

Flash 3 or later.

_ymouse
Syntax
instancename._ymouse

Arguments

instancename The name of a movie clip instance.

Description

Property (read-only); indicates the y coordinate of the mouse position.

This property is returned by the getMousePostion function.
ActionScript Dictionary 333

Player

Flash 5 or later.

_yscale
Syntax
setProperty("movieclip", _yscale, "percentage")

Arguments

percentage The scale of the current movie.

movieclip The name of a movie clip.

Description

Property; sets the scale (percentage) of the movie as applied from the registration
point of the movie clip. The default registration point is (0,0).

Player

Flash 4 or later.
Chapter 6334

A

APPENDIX A

. .. .
Operator Precedence and Associativity

Operator List
This table lists all of Action Script operators and their associativity, from highest
to lowest precedence.

Operator Description Associativity

Highest Precedence

+ Unary plus Right to left

- Unary minus Right to left

~ Bitwise one’s complement Right to left

! Logical NOT Right to left

not Logical NOT (Flash 4 style) Right to left

++ Post-increment Left to right

-- Post-decrement Left to right

() Function call Left to right

[] Array element Left to right

. Structure member Left to right

++ Pre-increment Right to left

-- Pre-decrement Right to left
335

new Allocate object Right to left

delete Deallocate object Right to left

typeof Type of object Right to left

* Multiply Left to right

/ Divide Left to right

% Modulo Left to right

+ Add Left to right

add String concatenation (formerly &) Left to right

- Subtract Left to right

<< Bitwise Left Shift Left to right

>> Bitwise Right Shift Left to right

>>> Bitwise Right Shift (Unsigned) Left to right

< Less than Left to right

<= Less than or equal to Left to right

> Greater than Left to right

>= Greater than or equal to Left to right

lt Less than (string version) Left to right

le Less than or equal to (string version) Left to right

gt Greater than (string version) Left to right

ge Greater than or equal to (string version) Left to right

== Equal Left to right

!= Not equal Left to right

eq Equal (string version) Left to right

ne Not equal (string version) Left to right

& Bitwise AND Left to right

^ Bitwise XOR Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

Operator Description Associativity
Appendix A336

and Logical AND (Flash 4) Left to right

|| Logical OR Left to right

or Logical OR (Flash 4) Left to right

?: Conditional Right to left

= Assignment Right to left

“*=, /=, %=,
+=, -=, &=, |=,
^=, <<=,
>>=, >>>=”

Compound assignment Right to left

Lowest Precedence

Operator Description Associativity
Operator Precedence and Associativity 337

Appendix A338

Operator Precedence and Associativity 339

Appendix A340

B

APPENDIX B

. .. .
Keyboard Keys and Key Code Values

The following tables list all of the keys on a standard keyboard and the
corresponding key code values that are used to identify the keys in ActionScript.
For more information, see the description of the Key object in Chapter 7,
“ActionScript Dictionary.”
341

Letters A to Z and standard numbers 0 to 9

Letter or number key Key code

A 65

B 66

C 67

D 68

E 69

F 70

G 71

H 72

I 73

J 74

K 75

L 76

M 77

N 78

O 79

P 80

Q 81

R 82

S 83

T 84

U 85

V 86

W 87

X 88

Y 89

Z 90
Appendix B342

 0 48

 1 49

 2 50

 3 51

 4 52

 5 53

 6 54

 7 55

 8 56

 9 57

Letter or number key Key code
Keyboard Keys and Key Code Values 343

Keys on the numeric keypad

Numeric keypad key Key code

Numbpad 0 96

Numbpad1 97

Numbpad 2 98

Numbpad 3 99

Numbpad 4 100

Numbpad 5 101

Numbpad 6 102

Numbpad 7 103

Numbpad 8 104

Numbpad 9 105

Multiply 106

Add 107

Enter 108

Subtract 109

Decimal 110

Divide 111
Appendix B344

Function keys

Other keys

Function key Key code

F1 112

F2 113

F3 114

F4 115

F5 116

F6 117

F7 118

F8 119

F9 120

F10 121

F11 122

F12 123

Key Key code

Backspace 8

Tab 9

Clear 12

Enter 13

Shift 16

Control 17

Alt 18

Caps Lock 20

Esc 27

Spacebar 32
Keyboard Keys and Key Code Values 345

Page Up 33

Page Down 34

End 35

Home 36

Left Arrow 37

Up Arrow 38

Right Arrow 39

Down Arrow 40

Insert 45

Delete 46

Help 47

Num Lock 144

; : 186

= + 187

- _ 189

/ ? 191

` ~ 192

[{ 219

\ | 220

] } 221

‘’ ‘ 222

Key Key code
Appendix B346

C

APPENDIX C

. .. .
Error Messages

The following table contains a list of error messages returned by the Flash
compiler. An explanation of each message is provided to aid you in
troubleshooting your movie files.
347

Error message Description

Property <property> does not exist A property that does not exist was
encountered. For example, x = _green is
invalid, because there is no _green
property.

Operator <operator> must be followed
by an operand

An operator without an operand was
encountered. For example, x = 1 +
requires an operand after the + operator.
An operator is followed by an invalid
operand. For example, trace(1+); is
syntactically incorrect.

Syntax error This message is issued whenever a
nonspecific syntax error is encountered.

Expected a field name after '.' operator You must specify a valid field name when
using the object.field syntax.

Expected <token> An invalid or unexpected token was
encountered. For example, in the syntax
below, the token foo is not valid. The
expected token is while.
do {
 trace (i)
 } foo (i < 100)

Initializer list must be terminated by
<terminator>

An object or array initializer list is missing
the closing] or }.

Identifier expected An unexpected token was encountered in
place of an identifier. In the example
below, 3 is not a valid identifier.
var 3 = 4;

The JavaScript '<construct>' construct is
not supported

A JavaScript construct that is not
supported by ActionScript was
encountered. This message appears if any
of the following JavaScript constructs are
used: void, switch, try, catch, or throw.

Left side of assignment operator must be
variable or property

An assignment operator was used, but
the left side of the assignment was not a
legal variable or property.

Statement block must be terminated by '}' A group of statements was declared
within curly braces, but the closing brace
is missing.

Event expected An On(MouseEvent) or onClipEvent handler
was declared, but no event was specified,
or an unexpected token was encountered
where an event should appear.
Appendix C348

Invalid event

Key code expected You need to specify a key code. See
Appendix B for a list of key codes.

Invalid key code The specified key code does not exist.

Trailing garbage found The script or expression parsed correctly
but contained additional trailing
characters that could not be parsed

Illegal function A named function declaration was used
as an expression. Named function
declarations must be statements.
Valid: function sqr (x) { return x * x; }
Invalid: var v = function sqr (x) { return x *
x; }

Function name expected The name specified for this function is not
a valid function name.

Parameter name expected A parameter (argument) name was
expected in a function declaration, but an
unexpected token was encountered.

'else' encountered without matching 'if' An else statement was encountered, but
no if appeared before it. You can use else
only in conjunction with an if statement.

Scene type error The scene argument of a gotoAndPlay,
gotoAndStop, or ifFrameLoaded action was
of the wrong type. The scene argument
must be a string constant.

Internal error An internal error occurred in the
ActionScript compiler. Please send the FLA
file that generated this error to
Macromedia, with detailed instructions
on how to reproduce the message.

Hexadecimal digits expected after 0x The sequence 0x was encountered, but
the sequence was not followed by valid
hexadecimal digits.

Error opening #include file There was an error opening a file included
with the include directive. The error may
have occurred because the file was not
present or because of a disk error.

Malformed #include directive An include directive was not written
correctly. An include directive must use
the following syntax:
#include "somefile.as"

Error message Description
Error Messages 349

Multi-line comment was not terminated A multi-line comment started with /*is
missing the closing */ tag.

String literal was not properly terminated A string literal started with an opening
quotation mark (single or double) is
missing the closing quotation mark.

Function <function> takes <count>
parameters

A function was called, but an unexpected
number of parameters were encountered.

Property name expected in GetProperty The getProperty function was called, but
the second argument was not the name
of a movie clip property.

Parameter <parameter> cannot be
declared multiple times

A parameter name appeared multiple
times in the parameter list of a function
declaration. All parameter names must be
unique.

Variable <variable> cannot be declared
multiple times

 A variable name appeared multiple times
in a var statement. All variable names in a
single var statement must be unique.

‘on’ handlers may not be nested within
other ‘on’ handlers

An on handler was declared inside
another on handler. All on handlers must
appear at the top level of an action list.

Statement must appear within on handler In the actions for a button instance, a
statement was declared without a
surrounding on block. All actions for a
button instance must appear inside an on
block.

Statement must appear within
onClipEvent handler

In the actions for a movie clip instance, a
statement was declared without a
surrounding onClipEvent block. All actions
for a movie clip instance must appear
inside an onClipEvent block.

Mouse events are permitted only for
button instances

A button event handler was declared in a
frame action list or a movie clip instance’s
action list. Button events are permitted
only in the action lists of button
instances.

Clip events are permitted only for movie
clip instances

A clip event handler was declared in a
frame action list or a button instance’s
action list. Clip events are permitted only
in the action lists of movie clip instances.

Error message Description
Appendix C350

Error Messages 351

Appendix C352

INDEX

A

action
trace 126

actions
button parameters 40, 41
frame actions 40

AllowScale FSCommand 113

D

Debugger
activating in Web browser 121
display list 121
enabling 120
Flash Debug Player 119
movie properties 123
password 120
status bar 121
using 119
variables 122
Watch list 123

dialog boxes in forms 110

E

Exec FSCommand 113

F

Flash Debug Player 119
forms

advanced interactivity 109
verifying data 111

frame actions
assigning to keyframes 40
creating 40

FullScreen FSCommand 113

G

getFullYear() 193
K

keyframes
assigning frame actions 40

L

List Objects command 125
List Variables command 126

O

Output window
List Objects command 125
List Variables command 126
using 125

P

password
Debugger 120

R

RRB Color Value List 335

S

ShowMenu FSCommand 113

T

testing frame actions 41
troubleshooting

checklist 118
List Objects command 125
List Variables command 126
overview 117
using the Output window 125
using the trace action 126

V

variables
modifying in Debugger 122
verifying 111
353

verifying entered data 111

W

Watch list
Debugger 123
Index354

	Contents
	Getting Started
	What’s new in Flash 5 ActionScript
	Differences between ActionScript and JavaScript
	Text syntax
	Dot syntax
	Data types
	User-defined functions
	Local variables
	Math library
	Date and time functions
	Optimization
	Watcher
	XML

	Understanding ActionScript
	About scripting in ActionScript
	About planning and debugging scripts
	About object-oriented scripting
	About Movie Clip objects
	How scripts flow
	Controlling when ActionScript runs

	ActionScript terminology
	Deconstructing a sample script
	Using the Actions panel
	Normal Mode
	Expert Mode
	Switching between editing modes
	Using an external editor
	Choosing Actions panel options
	Highlighting and checking syntax
	About error highlighting

	Assigning actions to objects
	Assigning actions to frames

	Writing Scripts with ActionScript
	Using ActionScript’s syntax
	Dot syntax
	Slash syntax
	Curly braces
	Semicolons
	Parentheses
	Uppercase and lowercase letters
	Comments
	Keywords
	Constants

	About data types
	String
	Number
	Boolean
	Object
	Movie clip

	About variables
	Naming a variable
	Typing a variable
	Scoping a variable
	Variable declaration
	Using variables in a script

	Using operators to manipulate values in expressions
	Operator precedence
	Operator associativity
	Numeric operators
	Comparison operators
	String operators
	Logical operators
	Bitwise operators
	Equality and assignment operators
	Dot and array access operators

	Writing actions in ActionScript
	Writing a target path

	Controlling flow in scripts
	Using if statements
	Repeating an action

	Using predefined functions
	Calling a function

	Creating custom functions
	Defining a function
	Passing arguments to a function
	Using local variables in a function
	Returning values from a function
	Calling a function

	Using predefined objects
	Creating an object
	Accessing object properties
	Calling object methods
	Using the MovieClip object
	Using the Array object

	Using custom objects
	Creating an object
	Creating inheritance

	Opening Flash 4 files
	Using Flash 5 to create Flash 4 content

	Creating Interaction with ActionScript
	Creating a custom cursor
	Getting the mouse position
	Capturing keypresses
	Creating a scrolling text field
	Setting color values
	Creating sound controls
	Detecting collisions

	Integrating Flash with Web Applications
	Sending and loading variables to and from a remote file
	About security
	Checking for loaded data
	Using loadVariables, getURL, and loadMovie
	For more information on loadVariables, getURL, and loadMovie, see their entries in Chapter 7, “Ac...
	Using the XML object
	Using the XMLSocket�object

	Creating forms
	Creating a search form
	Using variables in forms
	Verifying entered data

	Sending messages to and from the Flash�Player
	Using fscommand
	About Flash Player methods

	Troubleshooting ActionScript
	Authoring and troubleshooting guidelines
	Using good authoring practices
	Using a troubleshooting checklist

	Using the Debugger
	Enabling debugging in a movie
	About the status bar
	About the display list
	Displaying and modifying variables
	Using the watch list
	Displaying movie properties and changing editable properties

	Using the Output window
	Using List Objects
	Using List Variables
	Using trace

	ActionScript Dictionary
	Sample entry for most ActionScript elements
	Entry title

	Sample entry for objects
	Entry title
	Method and property summary tables
	Constructor
	Method and property listings

	Contents of the dictionary
	–– (decrement)
	++ (increment)
	! (logical NOT)
	!= (inequality)
	% (modulo)
	%= (modulo assignment)
	& (bitwise AND)
	&& (short-circuit AND)
	&= (bitwise AND assignment)
	() (parentheses)
	– (minus)
	* (multiplication)
	*= (multiplication assignment)
	, (comma)
	. (dot operator)
	/ (division)
	// (comment delimiter)
	/= (division assignment)
	[] (array access operator)
	^(bitwise XOR)
	^= (bitwise XOR assignment)
	{} (object initializer)
	| (bitwise OR)
	|| (or)
	|= (bitwise OR assignment)
	~ (bitwise NOT)
	+ (addition)
	+= (addition assignment)
	< (less than)
	<< (bitwise left shift)
	<<= (bitwise left shift and assignment)
	<= (less than or equal to)
	= (assignment)
	-=(negation assignment)
	==(equality)
	> (greater than)
	>= (greater than or equal to)
	>>(bitwise right shift)
	>>= (bitwise right shift and assignment)
	>>> (bitwise unsigned right shift)
	>>>= (bitwise unsigned right shift and assignment)
	ActionScript Elements
	add
	_alpha
	Array
	Method summary for the Array object
	Property summary for the Array object

	Constructor for the Array object
	Array.concat
	Array.join
	Array.length
	Array.pop
	Array.push
	Array.reverse
	Array.shift
	Array.slice
	Array.sort
	Array.splice
	Array.unshift
	Boolean
	Boolean
	Constructor for the Boolean object

	Boolean.toString
	Boolean.valueOf
	break
	call
	chr
	Color
	Constructor for the Color object

	Color.getRGB
	Color.getTransform
	Color.setRGB
	Color.setTransform
	continue
	_currentframe
	Date
	Constructor for the Date object
	Date.getDate
	Date.getDay
	Date.getFullYear
	Date.getHours
	Date.getMilliseconds
	Date.getMinutes
	Date.getMonth
	Date.getSeconds
	Date.getTime
	Date.getTimezoneOffset
	Date.getYear
	Date.getUTCDate
	Date.getUTCDay
	Date.getUTCFullYear
	Date.getUTCHours
	Date.getUTCMilliseconds
	Date.getUTCMinutes
	Date.getUTCMonth
	Date.getUTCSeconds
	Date.setDate
	Date.setFullYear
	Date.setHours
	Date.setMilliseconds
	Date.setMinutes
	Date.setMonth
	Date.setSeconds
	Date.setUTCFullYear
	Date.setUTCDate
	Date.setUTCHours
	Date.setUTCMilliseconds
	Date.setUTCMinutes
	Date.setUTCMonth
	Date.setUTCSeconds
	Date.setYear
	Date.UTC
	delete
	do while
	_droptarget
	duplicateMovieClip
	else
	else if
	eq (equal—string version)
	escape
	eval
	evaluate
	for
	for..in
	_focusrect
	_framesloaded
	fscommand
	function
	ge (greater than or equal to—string version)
	gt (greater than -string version)
	getProperty
	getTimer
	getURL
	getVersion
	gotoAndPlay
	gotoAndStop
	_height
	_highquality
	if
	ifFrameLoaded
	include
	Infinity
	int
	isFinite
	isNaN
	Key
	Key.BACKSPACE
	Key.CAPSLOCK
	Key.CONTROL
	Key.DELETEKEY
	Key.DOWN
	Key.END
	Key.ENTER
	Key.ESCAPE
	Key.getAscii
	Key.getCode
	Key.HOME
	Key.INSERT
	Key.isDown
	Key.isToggled
	Key.LEFT
	Key.PGDN
	Key.PGUP
	Key.RIGHT
	Key.SHIFT
	Key.SPACE
	Key.TAB
	Key.UP
	le (less than or equal to - string version)
	length
	loadMovie
	loadVariables
	lt (less than - string version)
	Math
	Math.abs
	Math.acos
	Math.asin
	Math.atan
	Math.atan2
	Math.ceil
	Math.cos
	Math.E
	Math.exp
	Math.floor
	Math.log
	Math.LOG2E
	Math.LOG10E
	Math.LN2
	Math.LN10
	Math.max
	Math.min
	Math.PI
	Math.pow
	Math.round
	Math.sin
	Math.sqrt
	Math.SQRT1_2
	Math.SQRT2
	Math.tan
	maxscroll
	mbchr
	mblength
	mbord
	mbsubstring
	Mouse object
	MovieClipobject
	MovieClip.attachMovie
	MovieClip.duplicateMovieClip
	MovieClip.getBounds
	MovieClip.getBytesLoaded
	MovieClip.getBytesTotal
	MovieClip.getURL
	MovieClip.globalToLocal
	MovieClip.gotoAndPlay
	MovieClip.gotoAndStop
	MovieClip.hitTest
	MovieClip.loadMovie
	MovieClip.loadVariables
	MovieClip.localToGlobal
	MovieClip.nextFrame
	MovieClip.play
	MovieClip.prevFrame
	MovieClip.removeMovieClip
	MovieClip.startDrag
	MovieClip.stop
	MovieClip.stopDrag
	MovieClip.swapDepths
	MovieClip.unloadMovie
	_name
	NaN
	ne (not equal - string version)
	newline
	nextFrame
	nextScene
	not
	null
	Number
	Number
	Constructor for the Num ber object

	Number.toString
	Number.valueOf
	Number.MAX_VALUE
	Number.MIN_VALUE
	Number.NaN
	Number.NEGATIVE_INFINITY
	Number.POSITIVE_INFINITY
	Object object
	Constructor for the Object o bject
	Object.toString
	Object.valueOf
	onClipEvent
	on(MouseEvent)
	ord
	_parent
	parseFloat
	parseInt
	play
	prevFrame
	prevScene
	print
	printAsBitmap
	random
	removeMovieClip
	return
	_root
	_rotation
	scroll
	Selection
	Selection.getBeginIndex
	Selection.getCaretIndex
	Selection.getEndIndex
	Selection.getFocus
	Selection.setFocus
	Selection.setSelection
	set
	setProperty
	Sound
	Sound overview
	Constructor for the Sound object

	Sound.attachSound
	Sound.getPan
	Sound.getTransform
	Sound.getVolume
	Sound.setPan
	Sound.setTransform
	Sound.setVolume
	Sound.start
	Sound.stop
	_soundbuftime
	startDrag
	stop
	stopAllSounds
	stopDrag
	String
	" " (string delimiter)
	String
	Property summary for the Stringobject

	Constructor for the String object
	String.charAt
	String.charCodeAt
	String.concat
	String.fromCharCode
	String.indexOf
	String.lastIndexOf
	String.length
	String.slice
	String.split
	String.substr
	String.substring
	String.toLowerCase
	String.toUpperCase
	substring
	_target
	targetPath
	tellTarget
	this
	toggleHighQuality
	_totalframes
	trace
	typeof
	unescape
	unloadMovie
	updateAfterEvent
	_url
	var
	_visible
	void
	while
	_width
	_x
	XML Object
	Property summary for the XML object
	Collections summary for the XML object
	Constructor for the XML object

	XML.appendChild
	XML.attributes
	XML.childNodes
	XML.cloneNode
	XML.createElement
	XML.createTextNode
	XML.docTypeDecl
	XML.firstChild
	XML.haschildNodes
	XML.insertBefore
	XML.lastChild
	XML.load
	XML.loaded
	XML.nextSibling
	XML.nodeName
	XML.nodeType
	XML.nodeValue
	XML.onLoad
	XML.parentNode
	XML.parseXML
	XML.previousSibling
	XML.removeNode
	XML.send
	XML.sendAndLoad
	XML.status
	XML.toString
	XML.xmlDecl
	XMLSocket object
	Constructor for XML Socket object

	XMLSocket.close
	XMLSocket.connect
	XMLSocket.onClose
	XMLSocket.onConnect
	XMLSocket.onXML
	XMLSocket.send
	_xmouse
	_xscale
	_y
	_ymouse
	_yscale

	Operator Precedence and Associativity
	Operator List

	Keyboard Keys and Key Code Values
	Letters A to Z and standard numbers 0 to 9
	Keys on the numeric keypad
	Function keys
	Other keys

	Error Messages
	Index

